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Abstract— As computer and database technologies advance
rapidly, biologists all over the world can share biologically
meaningful data from images of specimens and use the
data to classify the specimens taxonomically. Accurate shape
analysis of a specimen from multiple views of 2D images
is crucial for finding diagnostic features using geometric
morphometric techniques. We propose an integrated fea-
ture selection and clustering framework that automatically
identifies a set of feature variables to group specimens
into a binary cluster tree. The candidate features are
generated from reconstructed 3D shape and local saliency
characteristics from 2D images of the specimens. A Gaussian
mixture model is used to estimate the significance value
of each feature and control the false discovery rate in the
feature selection process so that the clustering algorithm can
efficiently partition the specimen samples into clusters that
may correspond to different species. The experiments on a
taxonomic problem involving species of suckers in the genus
Carpiodes demonstrate promising results using the proposed
framework with only a small size of samples.

Index Terms— feature selection, clustering, taxonomy, shape
analysis, false discovery rate, image fusion

I. INTRODUCTION

Biologists have traditionally consulted field guides and
other published works to identify species that they en-
counter in the field and to summarize what is known
about the biology of those species. However, these guides
rarely contain complete information on species identity,
distribution and biology. Much of this information resides
with specimens in natural history museums, inaccessible
to most biologists. Existing information systems of natural
history museums are mainly taxonomically focused. They
are designed to give the research community global access
to specimen information for various named species or
higher taxonomic groups. However, the names assigned
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to specimens are not always the most up-to-date, or the
specimens may belong to groups that have not been
studied and fully resolved taxonomically.

The job of identifying and describing new species
and determining interrelationships among species falls on
taxonomists and systematists. Taxonomy and systematics,
as traditionally practiced, can be painfully slow. The
reason for this is that taxonomists typically have to
examine and gather data from large numbers of specimens
across broad geographical areas in order to identify the
features that uniquely diagnose a new species from related
known species. As a consequence, it is estimated that
only 10% of the world’s species have been discovered
and described. The pace of new species discovery and
description would speed up significantly if multimedia
and machine learning techniques could be developed to
automatically identify diagnostic features of specimens
archived in natural history museums.

Geometric morphometrics [20], as a well developed
technique, has been widely used in diagnosing fish species
[1]–[3]. The idea is to use landmarks to characterize
shape variation among the specimens of different species.
Computer-based statistical methods such as multivari-
ate analysis [4] are often applied to various taxonomic
problems with many successful stories [23]. However,
understanding why and how morphological differences
have emerged is challenging since body shape has a
genetic basis but is also subject to epigenetic and envi-
ronmental processes. An alternative is to apply outline
analysis [11] or eigenshape analysis [12] where more
information than the homologous landmarks is explored to
derive biologically meaningful features. As the advances
of efficient machine learning and data mining algorithms
[13], a new computational framework has been developed
[8] to jointly select features and classify fish species.
One interesting question is whether a good clustering
algorithm can automatically select useful features to quan-
titatively compare the similarity among specimens.

Feature selection algorithms for clustering largely fall
into three categories: the filter model [10], the wrapper
model [6], and the hybrid model [9]. The filter model
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relies on general characteristics of the data to select the
feature subset which are hard to obtain from the taxono-
mists. The wrapper model uses a prespecified clustering
algorithm to judge the relevance of the feature subset.
It relies critically on the clustering algorithm and tends
to be computationally expensive. The hybrid model uses
a filter based criterion to direct the search over feature
subsets but makes wrapper based feature selection.

The proposed feature selection framework is closely
related to the hybrid model. We fit each feature variable
by a Gaussian mixture and select the feature subset by
controlling the false discovery rate [5]. Our approach
is computationally efficient and can construct a binary
cluster tree for taxonomists to perform further analysis.
Two types of features are generated as the candidates. The
shape induced features from reconstructed 3D shape are
generated from multiple views of each specimen. Local
saliency characteristics are generated directly from the 2D
images. In our study of fish genus Carpiodes, we found
that one species, namely C. velifer separates well from the
other two, C. carpio and C. cyprinus. However, C. carpio
and C. cyprinus do not form as well separated clusters.
Most of the specimens from the Rio Grande and upper
Colorado River in Texas, which are presently classified
taxonomically as C. carpio, fall into the C. cyprinus-like
cluster, a result in agreement with recent DNA sequencing
results.

In summary, our contributions include: (1) defining a
framework for joint feature selection and clustering with
possibly correlated feature set which is generally ap-
plicable to many taxonomic problems; (2) demonstrating
that our framework is effective in constructing a binary
cluster tree within fish species complexes using shape and
saliency features from specimen images taken in three
different views; and (3) revealing that our framework can
help taxonomists expedite the diagnosis of specimens for
the revision of existing taxonomy and the discovery of
new species.

The rest of the paper is organized as follows. Section II
describes a challenging taxonomic problem involving
specimens from the genus Carpiodes where geometric
morphometrics can lead to controversial taxonomic re-
sults. Section III presents the computational framework
for integrated feature selection and clustering. Section IV
discusses the feature generation method and feature selec-
tion criterion. Section V presents the experimental results
on the taxonomic problem using the proposed feature
selection and clustering method. Concluding remarks are
given in Section VI.

II. MOTIVATING EXAMPLE

We start with a discussion of a taxonomic problem
involving suckers of genus Carpiodes. The genus Car-
piodes, as currently recognized, comprises three widely
distributed species: the river carp-sucker Carpiodes carpio
(C. carpio); the quillback Carpiodes cyprinus (C. cypri-
nus), and the highfin carp-sucker Carpiodes velifer (C.
velifer). Most taxonomists regard each of these species as

Figure 1. Digitized 15 homologous landmarks using TpsDIG Version
1.4 (by F. J. Rohlf).

complexes of multiple species in need of revision [21].
The goal of taxonomic revision in this case is to identify
and formally describe the unrecognized species.

Geometric morphometrics has been applied to
analyze the variation in body shape using a collection
of biologically definable landmarks (also called
homologous landmarks) along the body [2], [3].
Capturing geometry by a way of landmark data
has become rather commonplace. Landmarks are
precise locations on biological forms that hold some
developmental, functional, structural, or evolutionary
significance. Figure 1 shows 15 homologous landmarks
digitized on a specimen using TpsDIG software tool
developed by F. J. Rohlf of SUNY Stony Brook
(http://life.bio.sunysb.edu/morph/). The
analysis methods accompanying the software focus on the
coordinates of landmarks and the geometric information
about their relative positions. Through the alignment of
landmarks and statistical analysis of the derived shape
variables, groups of specimens may be identified as
distinct in the overall shape space. Unfortunately, the
current geometric morphometric methods have two major
limitations:
• Groups of specimens are distinguished from other

populations based on a small set of derived vari-
ables, which are usually functions, in the simplest
form, linear combinations, of all shape variables. As
such, derived variables are difficult to interpret in
terms of particular body characters that taxonomists
commonly used in defining new species, and thus
cannot be formally used to describe the unrecognized
species.

• Shape variation of specimens from closely related
species or subspecies may not be discernible in the
overall shape space or using the analysis based on
landmark coordinates. Therefore, existing geometric
morphometric methods may generate misleading re-
sults.

Over the years since [21] was published, H. L. Bart
has examined shape and DNA sequence variation in many
Carpiodes populations. Figure 2 shows the results of an
analysis of overall body shape based on a geometric mor-
phometrics using canonical variate analysis (CVA). CVA
grouped specimens from the Rio Grande (squares), upper
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Figure 2. Plot of 650 Carpiodes specimens representing three distinct
morphotypes on the first two canonical variate axes based on derived
shape variables from geometric morphometric analysis of landmark data.

Colorado River (stars), and other western Gulf Slope
rivers cluster with C. carpio specimens (circles) from the
Mississippi River Basin. However, a surprising discovery
from the DNA sequence analysis was that the forms in
Rio Grande and upper Colorado River system of Texas do
not agree at all with C. carpio. Rather, they are closely
related to C. cyprinus, which was not known to occur on
the western Gulf Slope. Careful inspection of Carpiodes
specimens in the Rio Grande and upper Colorado River
system reveals that they lack the protuberance (“nipple”)
on the lower lip, which is diagnostic of C. carpio and
C. velifer. They also have a relatively large head and a
long snout, characters seen only in C. cyprinus. However,
specimens from these populations also have an elongate
and slender body, and it is these characters that cause
them to be erroneously classified as C. carpio based on
overall body shape analysis.

It took H. L. Bart three years of careful study among
over 1000 Carpiodes specimens to determine that Rio
Grande and upper Colorado River populations were mis-
diagnosed as C. carpio, and instead represented a new
species related to C. cyprinus. The question we attempt
to address next is: Can computer aided feature selection
and clustering techniques be applied to diagnose taxo-
nomic groups in genus Carpiodes more accurately than
geometric morphometrics?

III. INTEGRATED FEATURE SELECTION AND
CLUSTERING

We first present the theoretical formulation of a general
taxonomic problem using mixture model with unknown
parameters. We then discuss the feature selection and
its impact on the clustering result. To avoid exhaustive
enumeration over all feasible feature subsets, we propose
to use an efficient step-down testing procedure by con-
trolling the false discovery rate.

A. Mixture Based Clustering

To construct a binary cluster tree, we denote N input
samples by YN = {y1,y2, ...,yN}. Assume that each
sample yi can either come from group 1 with proba-
bility α1, which has the likelihood function p(yi|θ1),
or from group 2 with probability α2, which has the
likelihood function p(yi|θ2). Thus the log-likelihood of
two-component mixture can be written as

log p(YN |Θ) =
N∑

i=1

log




2∑

j=1

αjp(yi|θj)




where {αj} satisfies α1 > 0; α2 > 0; α1 + α2 =
1. The unknown parameter to be estimated from the
input samples is denoted by Θ = {θ1, θ2, α1, α2}. The
maximum likelihood estimate Θ̂ML can be obtained using
the following iterative procedure.

1) Make an initial guess Θold.
2) Compute the mixture probabilities for each sample

as follows.

βji =
αold

j p(yi|θold
j )

∑2
j=1 αold

j p(yi|θold
j )

.

3) Update the mixture probability

αnew
j =

1
N

N∑

i=1

βji.

4) Identify the indices of input samples which clusters
to group j

Sj = {i|βji > 0.5}.

5) Update the parameter estimate for each component

θnew
j = arg max

θj

∑

i∈Sj

log p(yi|θj).

6) Update with Θold = Θnew. Repeat steps 2)–5) until
Θnew converges.

The algorithm described above can be seen as a special
type of the expectation maximization (EM) procedure
[18]. It guarantees to converge to a stationary point of
the likelihood function, but not necessarily the global
maximum. In practice, one should examine whether |I1|
and |I2| are well balanced and make a few random initial
guesses to avoid being trapped in a local maximum.

Based on the clustering results, one can continue the
procedure to each subset of the samples until all input
samples are partitioned into a binary cluster tree. Note
that the parameters θ1 and θ2 can reside in different
spaces or have different dimensions. The reliability of
each binary clustering step depends on the separability
between p(y|θ1) and p(y|θ2), which can be measured
using K-L divergence [18].

12 JOURNAL OF MULTIMEDIA, VOL. 3, NO. 3, JULY 2008

© 2008 ACADEMY PUBLISHER



B. Feature Selection in Mixture Based Clustering

Assume that each sample yi = [yT
i1 yT

i2 ... yT
id]

T

contains d candidate features and only a small subset of
the features is relevant to the mixture based clustering.
Denote by YN(IK) the input samples with K features
indexed by IK being selected from the d candidates.
With the conditional independence assumption among the
selected features, the log-likelihood of two-component
mixture can be written as

log p(YN(IK)|Θ(K)) =
N∑

i=1

log




2∑

j=1

αj

K∏

l=1

p(yi(l)|θj(l))


 .

Note that the unknown parameter for each cluster depends
on the selected feature subset. For example, the input
sample is a 12 dimensional vector but only the first
and second component are from a Gaussian mixture
distribution while the rest components are from a single
Gaussian distribution. In this case, d = 12,K = 2 and
the best feature subset is Ik = {1, 2}. Selecting any other
feature will deteriorate the clustering performance.

Denote by Hj(IK ,Θ(K)) the hypothesis that the fea-
ture subset has the index set IK with mixture parameter
Θ(K). It is tempting to select the hypothesis that yields
the maximum likelihood, i.e.,

(ÎML
K , Θ̂ML

(K)) = arg max
(IK ,Θ(K))

log p(YN(K)|Θ(K)).

However, it does not make too much sense to compare
the hypotheses with the underlying likelihood functions
in different parameter spaces. A more complicated para-
metric model can easily overfit the observation data when
sample size is small. Thus one has to introduce appropri-
ate penalty to the log-likelihood function such as using the
minimum description length (MDL) criterion [19]. Note
that the number of hypotheses grows exponentially in d
which makes the feature subset selection very inefficient.
Next, we propose a less accurate but more efficient feature
selection method that only controls the false selection rate
to be below a desired level.

C. Efficient Feature Selection and Clustering by Control-
ling False Discovery Rate

To avoid exhaustive search over all feature subsets, we
treat feature selection problem as multiple hypothesis test-
ing with the following problem formulation. A hypothesis
Hj(IK) describes the index set IK ⊆ {1, · · · , d} of the
input sample, i.e., the selected feature subset. Formally,
we can write the hypothesis
Hj(IK): θ1(i) 6= θ2(i) if i ∈ IK , otherwise θ1(i) = θ2(i).

In the above formulation, the input samples from the
selected feature subset are from a mixture distribution
while the rest of the input variables are assumed to be
from a single parametric distribution. This makes all
hypotheses have the same parameter space. The selection
of feature subset can be viewed as testing d hypotheses
(θ1(i) = θ2(i) vs. θ1(i) 6= θ2(i), i = 1, ..., d) simul-
taneously. Among those features that are truly from a

mixture distribution, we want to control the percentage of
selecting non-diagnostic features from the d candidates.
The control of false discovery rate (FDR) is less strict than
the control of family-wise error rate but more reasonable
when d is large [5]. We want to select the feature subset
for mixture based clustering with controlled FDR so that
the probability of selecting diagnostic features will be
higher than that using the family-wise error rate control.
The proposed procedure to choose a hypothesis Hj within
the desired FDR level does not require any independence
assumption of the test statistics. It is a step-down test
which is more efficient than the commonly used step-
up FDR test [5] when the number of selected features is
relatively small compared with d.

The procedure starts with the test statistic T1, · · · , Td

based on the element-wise maximum likelihood estimate
θ̂(1), · · · , θ̂(d). Each test statistic Ti is associated with a
p-value [18], πi, indicating the probability of obtaining
the test statistic at least as extreme as Ti when θ1(i) =
θ2(i) = θ̂(i), i.e., the two mixtures coincide. For any user
specified significance level q ∈ (0, 1), the feature subset is
selected by performing the following steps which controls
the FDR to be below q.
• Order the p-values such that π(1) ≤ · · · ≤ π(d).
• Compute the index ui = min

(
1, d

(d−i+1)2 q
)

, i =
1, ..., d.

• Reject all hypotheses θ1(j) = θ2(j) for 1 ≤ j ≤ K−1
where K is the smallest index for which π(K) > uK .
If no such K exists, then the clustering algorithm
stops.

Once the subset ÎK is determined, the mixture based
clustering result should be recomputed using only the se-
lected input features. Clearly, the FDR controlled feature
selection procedure is much more efficient than finding
the optimal feature subset via exhaustive search. The
proof that the above procedure yields the FDR below the
significance level q can be found in the appendix.

Note that the mixture based clustering with feature
selection algorithm only needs to find the maximum
likelihood estimates of d different mixture models. The
associated p-values rely on the clustering algorithm,
which is similar to the wrapper model.

IV. FEATURE GENERATION

A. 3D Shape Construction from Multiple Views

Three-dimensional reconstruction of objects from two-
dimensional images is a fairly well explored field. The
most common approach has been reconstruction of the
3D shape from multiple 2D slices, typically obtained
using Computed Tomography (CT), Magnetic Resonance
Imaging (MRI), etc. However, these methods are expen-
sive and time consuming when being applied to digitize
the specimens. A less expensive method is considered as
follows. Given a set images of a specimen from multiple
views, we want to construct the 3D locations of all
landmarks on the images. Body shape and form characters
can be deduced from the landmarks [20]. Figure 3 shows
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13 manually marked landmarks and certain distances (in
pixels) between two landmarks on a Carpiodes specimen
from upper Colorado River. Its species is yet to be
determined.

359.08

218.97

88.74 128.22 166.35

126.10

65.97 40.65

47.49
87.72

43.64

Figure 3. Multiple views of a specimen with landmarks from upper
Colorado River in Texas.

From a mathematical point of view, morphology is a
set theoretic method to image processing characterized
by selective filtering of data at every stage, so that only
desired artifacts can be isolated and later recognized. Here
we describe a few morphological operations being used
to isolating and identify feature regions.
• Thresholding: All vertices for which the value of

feature-marker fitting lies within the predetermined
lower and upper limit are marked as feature and
others as background.

• Neighborhood: For each vertex, the set of its imme-
diately connected neighbors is computed. The radius
of a neighborhood can be recursively enlarged by
increasing the depth of the connection.

• Dilation: Every vertex is examined and marked by 1
if at least one of its neighbors is marked by 1.

• Erosion: Every vertex is examined and marked by 0
if at least one of its neighbors is marked by 0.

Four paired landmarks are identified from four different
views of the specimen image, namely, the two eyes, the
eye and the middle point of tail, the upper fin and the
upper point of tail, the lower lip and first lower fin. We use
four midpoints of the four paired landmarks and the tip
of head to register the coordinate system of the specimen
in 3D. We adopt the parallax based approach [14] to
construct the 3D shape using the landmarks and generate
candidate features by removing non-shape related varia-
tions as described in [8]. A more accurate method to place
landmark or semi-landmark points on complex surfaces
for the purpose of registration, alignment and morphing
has been developed in [22].

B. Saliency Based Features

Feature generation using landmark data alone is lim-
ited. For example, when landmark data are collected,
no verifiable information regarding the surfaces that lie

between the landmarks is retrievable from analysis of the
data. Other salient features are also useful for discrimi-
nating different species especially when the overall body
shape characteristics are similar among certain species.
Gradient magnitude is traditionally used to discriminate
between salient and non-salient edges but it often suf-
fers from noise and minor variation in intensity values.
Alternatively, we focus on information theoretic measure
with respect to spatial locations and scales of objects in
an image. Consider a grey scale image with a location
x around which its circular neighborhood D is specified
with adjustable radius s. The saliency at x with scale s
is measured by the entropy

HD(s, x) = −
∑

d∈D

ps,x(d) log ps,x(d).

The entropy-scale characteristics of a particular neighbor-
hood represents the local image structure. The scale at
which the entropy reaches maximum is considered con-
sidered the appropriate scale for feature extraction since
it is the scale at which the image becomes unpredictable
or difficult to model. A inter-scale saliency criterion was
proposed in [15], which selects scale sp such that

sp = arg max
s
HD(s, x)WD(s, x)

where

WD(s, x) =
s2

2s− 1

∑

d∈D

|ps,x(d)− ps−1,x(d)| .

The probability density function ps,x(d) is estimated
within the neighborhood area using the histogram. Note
that the entropy measure between two adjacent scales
does not always depict the interesting feature of an object
accurately. A modified criterion, motivated by [17] to
include both spatial and temporal saliency, was also given
in [15], which selects sp such that

sp = arg max
s
SD(s, x)

where

SD(s, x) = HD(s, x)WD(s, x)WD(s + 1, x).

In practice, regions with saliency values SD(s, x) greater
than a certain threshold are selected as the candidate
features. A feature is defined by its saliency region
parameterized by the center x and radius sp.

The salient regions are computed for each 2D image
using the technique developed in [7]. All salient regions
being detected for each specimen sample are normalized
and aligned as the candidate features. Note that these
features are automatically generated without the need of
landmarks and very effective in separating the specimen
from the background.

V. EXPERIMENTS

A. The Taxonomic Problem

We have successfully used computer-based shape
analysis methods to characterize variation in body pro-
portions among Carpiodes specimens [7], [8]. However,
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the use of morphometric techniques alone can generate
misleading results as seen in Section II. In [8], the images
of 650 Carpiodes specimens, each with 15 landmarks,
from Tulane Museum of Natural History Fish Collection
were used to identify features diagnostic for classifying
them into three different species. Those features were
also used to classify the Carpiodes specimens from the
Rio Grande and upper Colorado River. Over 60% of the
specimens were correctly diagnosed as C. cyprinus based
on two statistically significant feature variables (related to
the distance between the naris and the tip of the snout in
proportion to the distance between the naris and the eye).
Here we are interested in clustering Carpiodes specimens
into a binary cluster tree without using the opinion from
a taxonomist. We evaluate the effectiveness of the feature
selection and clustering accuracy by comparing the results
with those using the landmark aided feature selection for
classification [8] and saliency based feature selection for
classification [7].

Another interesting experiment is to cluster specimens
of Carpiodes from Rio Grande and upper Colorado River
with other samples from known species. We would like
to see how close they are related to C. cyprinus and
C. carpio. Figure 4 shows three Carpiodes specimens
from different species, namely, C. carpio, C. cyprinus
and C. velifer. The side view provides most important
information on the body shape while the front, top and
bottom views provide detailed characteristics around the
head, snout and possible lip nipple of each specimen. Note
that the diagnostic features among these species are quite
subtle.

B. Clustering Result

We digitized 55 specimens and took four different
views (left, bottom top, front) of each specimen sample.
Among those 55 samples, 26 specimens are C. carpio
(labeled 1-26); 10 are C. cyprinus (labeled 27-36); 10
are C. velifer (labeled 37-46); 4 are from the Rio Grande
(labeled 47-50) with their species undetermined; and 5
are from upper Colorado river in Texas (labeled 51-55)
with their species undetermined. In the first level of the
binary cluster tree, all specimens of C. velifer cluster into
one group. The remaining specimens form another group.
In the second level of the cluster tree, 3 specimens of C.
cyprinus cluster with a group comprising 23 C. carpio
specimens. Another cluster contains 3 specimens of C.
carpio and 7 specimens of C. cyprinus. Interestingly, all
of the 4 specimens from the Rio Grande cluster with
the C. cyprinus group and 2 out of 5 specimens from
the upper Colorado River in Texas also cluster with
this group. This clustering result seems to be a strong
indication that the unknown specimens should not be
classified as C. carpio as traditionally held. Figure 5
shows the complete dendrogram of the clustering result.
We set the false discovery rate to be below 0.01 and
consider the candidate features from both normalized 3D
shape characters and saliency regions. The distance of
each level of the binary cluster tree is normalized using

(a) C. carpio

(b) C. cyprinus

(c) C. velifer

Figure 4. Sample images of Carpiodes from three different species.

the K-L divergence between the estimated two mixture
densities. We can see that the distinction between those
specimens belonging to C. carpio and those belonging to
C. cyprinus is not as significant as the distinction between
those specimens belonging to C. velifer and the rest of the
specimens.

We trained a logistic regression classifier with three
selected features [8] that can successfully classify the 36
specimens from C. carpio and C. cyprinus without any
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Figure 5. Dendrogram of 53 specimen samples using five selected
features.

error. In the testing phase, 3 out of 4 specimens from
the Rio Grande and 4 out of 5 specimens from upper
Colorado river in Texas are classified as C. cyprinus. Thus
the supervised learning confirms our clustering results. It
again indicates a different conclusion from the traditional
taxonomic practice and provides adequate evidence for a
taxonomist to reexamine the existing species for possible
revision.

C. Selected Features

At present, no method is tailored to the problem of
finding diagnostic features in morphometric data. Thus
selecting a small subset of feature variables which sepa-
rates the specimen samples in two groups with maximal
distance is crucial for a taxonomist to judge them to be
different species [16]. For the first level clustering, two
saliency based features were selected among 25 candi-
dates and two 3D shaped induced features were selected
among 32 candidates. For the second level clustering,
three saliency based features were selected and two 3D
shaped induced features were selected. The saliency based
features being selected are centered around the head from
left, bottom and top views, which is closely related to the
diagnostic difference in snout and mouth size between C.
carpio and C. cyprinus. The shape induced features being
selected have strong correlation with the features selected
for classification using a logistic regression classifier [8].
Thus our approach is very effective in clustering samples
from Carpiodes into different species using an FDR
controlled feature selection procedure even with small
sample size.

We also tested the clustering algorithm based on the
selected saliency features alone and compared with the
supervised classifier with the same selected features as in
[7]. For the first level clustering, the error is 12%. For
the second level clustering, the error increases to 28%
without considering the specimens from the Rio Grande
and upper Colorado river in Texas. Thus the 3D shape

induced features from the 2D images play an important
role in clustering the specimens from different species.

VI. DISCUSSION AND CONCLUSIONS

We have developed an integrated feature selection
and clustering framework that automatically identifies a
set of diagnostic feature variables to group specimens
into a binary cluster tree. The key step is to model
specimens with diagnostic feature variables based on
a mixture distribution while those with non-diagnostic
feature variables based on a single-mode distribution. We
apply false discovery rate control to the feature selection
procedure and provide a reasonable tradeoff between
accuracy and efficiency. In the experimental study, the
candidate features were generated based on the 3D shape
derived from the landmarks on the specimen images from
multiple views and local saliency characteristics from the
2D images directly. We evaluated the clustering accuracy
and the relevance of the selected features using specimens
in the genus Carpiodes. We found that two species,
namely, C. carpio and C. cyprinus, are well separated
from C. velifer, but do not form well separated clusters
themselves. Interestingly, the previously misdiagnosed
specimens from the Rio Grande and upper Colorado
River in Texas are largely correctly grouped into the C.
cyprinus-like cluster. The results show good potential for
a computer-aided approach to taxonomic research and
species diagnosis.

APPENDIX: PROOF OF FDR CONTROL IN FEATURE
SELECTION

In the appendix, we show that the feature subset
selection method presented in Section III controls the false
discovery rate to be below the user specified level.
Proof: Denote by F the number of non-diagnostic fea-
tures being selected and T the total number of features
being selected. The FDR procedure intends to control the
expected value of the random variable Q = F/T . Define
Q = 0 if T = 0 since no error of false selection is
committed. Let d0 be the number of true non-diagnostic
features. Denote by p1, ..., pd0 the p-values corresponding
to the non-diagnostic features. Without loss of generality,
we assume that 1 ≤ d0 ≤ d − 1. Let d1 = d − d0 and
denote by p∗1, ..., p

∗
d1

the p-values corresponding to the
d1 true diagnostic features. Denote the ordered p-values
p(1) ≤ ... ≤ p(d0) and p∗(1) ≤ ... ≤ p∗(d1)

corresponding to
the non-diagnostic and diagnostic features, respectively.
Define S to be the largest integer j satisfying p∗(1) ≤
u1, ..., p

∗
(j) ≤ uj . Let S = 0 when p∗(1) > u1. Clearly,

S diagnostic features would be selected by the FDR
controlled procedure if d1 diagnostic features were given.
Define the conditional error rate qe = E(Q|p∗1, ..., p∗d1

).
We will show next that qe ≤ q for 1 ≤ d1 ≤ d− 1 from
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which the FDR is clearly below the significance level q.

qe = E(F/T |p∗1, ..., p∗d1
)

≤ E[F/(S + F )|p∗1, ..., p∗d1
] (since S + F ≤ T )

≤ d0
S+d0

P (min(p1, ..., pd0) ≤ uS+1)
(since all nondiagnostic features are included)

≤ d0
S+d0

∑d0
i=1 P (pi ≤ uS+1)

≤ d0
S+d0

(d− S)uS+1 (since d0 + S ≤ d)

= d0(d−S)
S+d0

min
(
1, d

(d−S)2 q
)

≤ d0d
(S+d0)(d−S)q = d0d

d0d+S(d−d0−S)q

≤ q
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