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Abstract

Water, sediments, fish and other biota were sampled from fixed stations along bayous in the LaBranche Wetlands of Louisiana
as part of an environmental contamination study in 1996 and 1997. In order to understand the biological fate of some of
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these contaminants, a spotted gar (Lepisosteus oculatus) food-web model was developed from site-specific data and establi
bioaccumulation modeling assumptions. Based on gut contents analysis, the gar were found to feed on terrestrial arth
variety of small fish, aquatic insects, crayfish and grass shrimp. A Bayesian approach (a hierarchical model and Mark
Monte Carlo simulation) was used to estimate the kinetic rate constants of uptake from water, dietary uptake and total eli
for the food-web model using site-specific measurements of naphthalene, phenanthrene, and benzanthracene conc
reference literature inputs, and a hierarchical statistical model. This iterative simulation method resulted in a distributio
parameters for each chemical comprised of the last 3000 values from four separate Markov Chains of length 15,00
iterations. The posterior parameter values were found to be consistent with rate constants published in the literature fo
fish species, and were used to determine distributions of predicted gar PAH concentrations.
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1. Introduction

In 1996 and 1997, the Center for Bioenvironmental
Research at Tulane and Xavier Universities supported
environmental studies in the LaBranche Wetlands of
southern Louisiana (Lake Ponchartrain Basin, USA).
The study area was selected because one of the bayous,
Bayou Trepagnier, was the receiving stream for efflu-
ents from a petrochemical manufacturing complex for
nearly 80 years ending in 1995 (Flowers et al., 1998).
In related studies using microcosmsMitra et al. (2000)
investigated polycyclic aromatic hydrocarbon (PAH)
bioaccumulation from Bayou Trepagnier sediments in
grass shrimp (Paleomonetes pugio) and clams (Rangia
cuneata), andCarman et al. (1995)used PAH contami-
nated sediments from Pass Fourchon, Louisiana, USA
to study effects on meiofauna and their trophic interac-
tion with microorganisms. Field investigations include
Engelhaupt and Bianchi (2001)who studied the cycling
of high molecular weight dissolved organic carbon at
the site over 1.5 years, andOberdorster et al. (1999)
who investigated the impact of PAHs on the benthic
community structure.

A sign posted at the entry to Bayou Trepganier
warns the public of environmental contamination, but
the connecting waterways (e.g., Bayou LaBranche and
the Engineer’s Canal) are used for recreation, fishing
and crabbing. The potential for human exposure mo-
tivated this research to improve our understanding of
the biological fate of these contaminants in this wet-
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Bierman, 1990; Di Toro et al., 1991; van der Kooij et al.,
1991; Endicott and Cook, 1994; Landrum et al., 1994;
Meador et al., 1997; Wang et al., 1997).Thompson et al.
(2000) found that the equilibrium partitioning model
could not explain the accumulation of three PAHs (i.e.,
phenanthrene, pyrene, and chrysene) in oysters from a
high salinity estuary. Instead, they fitted Weibull and
lognormal distributions to lipid normalized tissue con-
centrations and organic carbon normalized sediment
concentrations and found the Weibull distribution to fit
the data well. They also investigated probability mod-
els for the ratio of the two concentrations, the biota-
sediment ratio, and found that these could be repre-
sented equally well by the loglogistic or lognormal dis-
tribution.

Models based upon mass balances track the flow
of chemical(s) between compartments formulated as
sets of ordinary differential equations which can be
simplified under steady-state conditions (McElroy and
Means, 1988; Barber et al., 1991; Thomann et al.,
1992; Gobas, 1993; Abbott et al., 1995; Wang et al.,
1996; Means and McElroy, 1997). Burkhard (1998)
compared the steady-state models ofGobas (1993)and
Thomann et al. (1992)and performed extensive sensi-
tivity and uncertainty analyses on these models. Predic-
tions made by the two models were found to be similar
except for compounds with logKow ranging from 6.5 to
6.9.Abbott et al. (1995)validated RIVER/FISH, a PC
based dynamic simulation model, using data collected
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Lepisosteus oculatus) food-web model for PAHs i
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ance throughout the central United States in la
ayous and rivers and feeds on a wide variety of p

ts tissue accumulates metals and organic compo
ypical of environmental mixtures and quantitative n
ological and immunological biomarkers of expos
re known (Hartley et al., 1996). Because of toxican
ioaccumulation, gars could pose health risks if c
umed by humans.

Many different methods have been used to m
hemical bioaccumulation. Previous studies of
rophobic organic chemical bioaccumulation u
odeling approaches based on equilibrium partit

ng theory that assumes thermodynamic equilibr
etween the lipids in biota, the organic carbon ph
f the sediments and water (Brown et al., 1982
r
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in an experimental stream setting.
Carrer et al. (2000)modelled dioxins and dibenzo

furans in clams, mussels, and fish by linking a trop
network model (Ecopath) based on energy flows
an ecosystem to a bioaccumulation model based
Thomann (1989)andThomann et al. (1992). Outputs
of the Ecopath model (e.g., production:biomass, co
sumption:biomass, respiration, diet matrix) were us
as inputs into the bioaccumulation model to provid
better representation of these parameters in mode
bioaccumulation. Their model predictions were with
one order of magnitude for the clams and mussels
two orders of magnitude for the fish.

Wang et al. (1996)used the Boltzman equation t
describe organism growth in their study of aquatic
ganism bioconcentration. Using non-linear regress
they fitted their model to the data ofGobas et al. (1991),
Mailhot (1987), Geyer et al. (1984), andEllgehausen
et al. (1980). They found the ratio of bioconcentratio
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factors (previous studies:current study) to range from
0.28 to 2.82 for several different hydrophobic organic
contaminants and organisms.

Models based on fugacity includeBooty and Wong
(1996), Campfens and Mackay (1997), and Gobas
et al. (1999). The model described byCampfens and
Mackay (1997)is an equivalent reformulation of a
concentration-based model. Its main advantage is that
the fugacity factors (similar to partition coefficients al-
though not necessarily at equilibrium conditions) have
similar values for chemicals of similar octanol–water
partition coefficient. Campfens and Mackay demon-
strated their model using data from the Lake Ontario
salmonid food web described byGobas (1993), and
calculated fugacity parameters from the concentrations
and rate constants described by Gobas. Their results
were consistently higher than the observations.

Others (Norstrom et al., 1976; Madenjian and
Carpenter, 1993; Eby et al., 1997; Luk and Brockway,
1997) incorporated bioengergetics into the bioaccu-
mulation equations.Madenjian and Carpenter (1993)
described an individual-based model of Lake Trout
bioaccumulation where three sub-models were com-
bined to address the observed population variability
in PCB concentration. They used a bioenergetics
based submodel (Stewart et al., 1983) to describe fish
growth, a predator–prey submodel, and a PCB bioac-
cumulation submodel (Thomann, 1989). Individual
fish of a particular size were simulated and their daily
encounters with prey were allowed to vary randomly.
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gar food web of this wetlands ecosystem, and demon-
strates a method to quantify the combined uncertainty
and variability in model predictions.

In this study, we account for variability and uncer-
tainty in the data using a hierarchical statistical model
and Markov Chain Monte Carlo simulation (Gelman
et al., 1995; Bois et al., 1996b) to estimate sediment
and water PAH concentrations, water organic matter
concentration, sediment organic carbon fraction, and
unobservable, kinetic rate constants in fish. Prior distri-
butions, assigned to variable and uncertain parameters,
are multiplied by the likelihood of the data to yield an
unnormalized, joint posterior distribution of the param-
eters conditional upon the data. The marginal posterior
distributions of the parameters of interest can then be
examined and used to simulate distributions of model
predictions.

In related studies, Bayesian techniques were used to
estimate parameters of: (1) an ocean ecosystem model
using simulated data (Harmon and Challenor, 1997);
(2) a microbial substrate model using simulated data
(Omlin and Reichert, 1999); and (3) a water quality
model using data from an 18 lake survey (Aldenberg
et al., 1995). The Revised Baseline Modeling Report,
Hudson River PCBs Reassessment RI/FS (U.S.EPA,
2000b) used Bayesian updating with FISHRAND, an
aquatic food-web bioaccumulation model based on
Gobas (1993)andGobas et al. (1995)that incorporates
probability distributions for model parameters.Linkov
et al. (1999)used Bayesian updating to reduce uncer-
t
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We formulated our model with assumptions ba
n the work of several investigators in the study

ood web bioaccumulation of hydrophobic orga
ontaminants in aquatic systems (Landrum et al., 1992
homann et al., 1992; Gobas, 1993; Iannuzzi et
996; Morrison et al., 1996; Thomann and Kom
999). In these earlier models, input parameters (
nvironmental conditions, kinetic rate constants,
hysiological parameters) were treated as known
tants, and no attempt was made to quantify the
ertainty and variability in the model predictions. R
ently, the United States Environmental Protec
gency (U.S.EPA, 2001) recommended probabilist
odeling approaches (e.g., Bayesian analysis, one

wo-dimensional Monte Carlo) to characterize un
ainty and variability in risk assessment. Our study u
probilistic Bayesian approach to provide a framew

or understanding the transfer of PAHs in the spo
ainty in predicting the distribution of137Cs in a conif-
rous forest. Later,Linkov et al. (2001)performed a

wo-dimensional Monte Carlo uncertainty analysis
CB bioaccumulation in an osprey (Pandion haliae

us) food chain model based upon the models ofGobas
1993)andGobas et al. (1995).

Of 50 semi-volatile contaminants analyzed in
ues, we focus on three PAHs that were detecte
easureable levels: naphthalene; phenanthrene
enzanthracene. Their octanol–water partition co
ients (Kow) range from 103.3 to 105.6 and the U.S
PA (2000a)recommends these compounds, with
xception of naphthalene, for fish tissue screenin
AHs. Based onKow, the bioaccumulation potential

hese PAHs is highest for benzanthracene comp
f four fused rings, followed by phenanthrene co
rised of three fused rings and is lowest for naphtha
omprised of two fused rings. While naphthalene
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the lowest potential for bioaccumulation of the three
PAHs, it is nevertheless one of the most ubiquitous
PAHs found in the environment from both combus-
tion sources and petroleum spills. It and other PAHs
are metabolized by many vertebrates (ATSDR, 1995;
1National Toxicology Program, 2000; Schreiner, 2003;
van der Oost et al., 2003), and the metabolites may be
more toxic than the parent compounds. In this study,
we estimate the kinetic rate constants in fish (i.e., di-
etary uptake, uptake from water, and total elimination)
and other uncertain/variable environmental parameters
from field-collected and reference literature data.

2. Methods

Our primary objective is to estimate the kinetic
rate constants in fish and other uncertain/variable
environmental parameters (water and sediment PAH
concentration, water organic matter concentration,
and sediment organic carbon fraction) using Bayesian
techniques of Markov Chain Monte Carlo simulation
and a hierarchical statistical model. These parameters
are used in computing bioconcentration, biomag-
nification, and biota-sediment accumulation factors
(Means and McElroy, 1997) typically from single-
value estimates of the rate constants or measured
environmental parameters (Ellgehausen et al., 1980;
Geyer et al., 1984; Bierman, 1990; Di Toro et al.,
1991; van der Kooij et al., 1991; Landrum et al., 1992;
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2.1. Bioaccumulation model formulation

The food-web model (Fig. 1) is based on the
assumptions ofGobas (1993)who modeled bioac-
cumulation of hydrophobic organic contaminants
in the food web of Lake Ontario salmonids. Gobas
describes for each type of organism, a time-dependent,
ordinary differential equation, but ultimately uses a
steady-state formulation. The following equations
describe the concentration of contaminant in each
type of organism. We assume that the concentration of
contaminant in terrestrial insects and arthropods,Cti , is
zero.

Eq. (1)describes the dissolved water concentration,
Cwd, calculated from the total water concentration,Cwt,
the octanol–water partition coefficient,Kow, the water
organic matter concentration,Com, and the density of
the organic matter,dom.

Cwd = Cwt

1 + KowCom/dom
(1)

In plankton and aquatic insects, bioaccumulation is
determined by partitioning of the contaminant between
the water and the lipids in the organism.

Ca = LaKowCwd (2)

whereCa is the whole body concentration andLa the
lipid fraction of the organism.

Crayfish and grass shrimp are assumed to be in equi-
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s described byEq. (3).

b = CsdocLb

focdl
(3)

hereCb is the whole body concentration in the cr
sh or shrimp,Cs the sediment concentration,doc the
ensity of organic carbon,Lb the lipid fraction,foc the
rganic carbon fraction of the sediment anddl the den
ity of lipids.

The concentration of toxicant in fish,Cf , is

f = kufCwd + kdfCdf

kelim
(4)

herekuf is the rate constant for uptake through
ills, kdf the dietary uptake rate constant, andkelim the

otal elimination rate constant including eliminat
hrough the gills, fecal egestion, dilution due to grow
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Fig. 1. Spotted gar food web based upon stomach contents analysis. The numbers associated with each arrow indicate the diet fraction for each
prey item.

and metabolism.Cdf is the concentration of contami-
nant in the diet calculated as

∑
m pmCm, wherepm is

the fraction of the fish diet made up of preymandCm

the chemical concentration in preym.
Food web structure and feeding preferences were

determined from the gut content analyses of 14 spotted
gar and 298 small fish (Cyprinodon variegatus, Gam-
busia affinis, Poecilia latipinna) collected in Bayou
Trepagnier from 1996 to 1997. Prior to dissection and
content analysis, gar stomachs were removed on the
day of capture and fixed in 10% formalin solution, and
small fish were fixed whole in the field. Stomach con-
tents were identified to the lowest taxonomic level. Diet
fractions for spotted gar were computed as the ratio of
the number of prey typem to the total number of prey
found in the stomachs (Fig. 1). Diet fractions for small

fish were determined by combining data from all three
species and weighting the number of prey typem, nm,
by the number of stomachs containing prey typem,
sm.

nmsm
∑

nmsm
(5)

This method of summary was used for the small
fish because unequal numbers of stomachs were exam-
ined for each of the species. Weighting the number of
preym by the number of stomachs containing preym
adjusts for species-specific preferences. Terrestrial in-
sects and arthropods were also found in gar stomachs,
however, since these organisms are not aquatic, they
were assumed to be free of contamination for model-
ing purposes.
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2.2. Site-specific data

In 1996 and 1997, several site-specific measure-
ments of the model input parameters were made
by different investigators under the auspices of the
Tulane/Xavier Center for Bioenvironmental Research
(CBR). In addition to individual investigator studies,
the CBR supported core groups to facilitate field
sampling and laboratory analysis. Site-specific
measurements used to determine model input prior
distributions included PAH concentrations in water and
sediment, sediment total carbon fraction (TCF) used as
the upper bound on sediment organic carbon fraction,
and the concentration of total suspended particulates
(TSP) used as the upper bound for the concentration of
suspended organic matter. When site-specific measure-
ments were unavailable, data from the literature (e.g.,
lipid density and lipid fractions) were used as model
inputs (Table 1). Some of the organism lipid fractions
were measured in a recent study and are used in this
investigation.

Concentrations of individual PAHs in water and sed-
iment samples were measured by the CBR Analytical
Core. The concentrations of individual PAHs in gar
fish tissue were determined by Dr. Means’ analytical
laboratory for 11 spotted gar (Table 2) captured at dif-
ferent sites in Bayou Trepagnier between September
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1996 and March 1997. Details of these procedures are
outlined below.

2.2.1. Water and sediment analysis
Concentrations of individual PAHs in water were

measured by gas chromatography and mass spectrom-
etry (GC/MS) after extraction using a liquid–liquid
separatory funnel method based on U.S. EPA SW-846
Method 3510B (U.S.EPA, 1998). 1.0 l water samples
were placed in a 2 l separatory funnel; 5.0�l of sur-
rogate standard (M-8270-SS from Accustandard, Inc.,
New Haven, CT, USA) was added; and 60 ml of methy-
lene chloride was added. Samples were mechanically
shaken for a minimum of 2 min after which the methy-
lene chloride phase was removed. This procedure was
repeated three times for a total extraction volume of
180 ml of methylene chloride. Emulsions were broken
up either mechanically or by the addition of sodium
sulfate. GC grade methylene chloride and sodium sul-
fate were purchased from Fisher Scientific. Samples
were concentrated and analyzed as described below.

Concentrations of individual PAHs in sediment were
measured by GC/MS after extraction using an accel-
erated solvent extractor (ASE-200) purchased from
Dionex Corporation (Sunnyvale, CA, USA) based on
SW-846 proposed Method 3545 (U.S.EPA, 1998).
Eight grams of sediment were added to a 100 ml beaker;
nput parameters treated as constant and data sources

nput description Variable Value

onstant parameters
Lipid density dl 0.9 kg/l G
Organic carbon density doc 0.9 kg/l G
Organic matter density dom 1.0 kg/l G

ctanol–water partition coefficients
Naphthalene Kow 2.00× 103 H
Phenanthrene 3.72× 104 H
Benzanthracene 4.07× 105 H

ipid fractions
Amphipod Lam 1.8% A

a
Aquatic vegetation Lav 1.6% A
Aquatic insect Lai 5.0% U
Grass shrimp Lsh 2.2% H
Small crayfish Lcr 2.1% H

eeding preferences Pfeed

Spotted gar
Small fish P
e

1993)
1993)
1993)

us Substances Data Bank (HSDB)

of values for a mixture of amphipods (Gewurtz et al., 2000), R.
(Meador et al., 1997), andG. fasciatus(Morrison et al., 1996)
for algae (Gobas et al., 1991) and plankton (Morrison et al., 1996)

ound based on insect lipid content (Chapman, 1982)

tinat
s, M. Kunas and H. Bart Jr.
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Table 2
Measured gar tissue PAH concentrations (Dr. Means’ laboratory)

Subject ID Concentration (ng/g)

Naphthalene (Cna) Ln(Cna) Phenanthrene (Cph) Ln(Cph) Benzanthracene (Cbz) Ln(Cbz)

1 2288 7.87 2.06 3.71 1.31 11.1 2.41
2 2278 6.19 1.82 2.91 1.07 10.8 2.38
3 2279 12.1 2.50 3.53 1.26 10.8 2.38
4 525 6.58 1.88 5.96 1.78 11.6 2.45
5 538 10.9 2.39 9.65 2.27 11.0 2.39
6 2276 5.98 1.79 2.76 1.01 11.0 2.39
7 2277 3.84 1.35 3.90 1.36 11.1 2.41
8 2282 12.2 2.50 3.74 1.32 10.6 2.36
9 2284 10.8 2.38 3.95 1.37 10.8 2.38

10 2287 2.98 1.09 3.66 1.30 1.12a 0.11a

11 1887 5.12 1.63 3.91 1.36 10.88 2.39
a Value not used because of a transcription error resulting in an order of magnitude difference in the concentration.

5�l of surrogate standard was added; 6 g of hydroma-
trix was added; and the mixture was thoroughly stirred
prior to transferring to a 33 ml Dionex Cell that con-
tained a 1.91 cm cellulose paper at the bottom. Hy-
dromatrix and cellulose papers were purchased from
Dionex Corporation. Hydromatrix was used to fill any
remaining volume in the cell. The ASE was then used
to extract the sample with methylene chloride. The ex-
tract was collected in a 60 ml vial, concentrated and
analyzed as described below.

Sample extracts (from either water or sediment)
were transferred to RapidVap beakers and placed in the
RapidVap. The RapidVap was operated at 55◦C with
nitrogen purge gas. Samples were concentrated to ap-
proximately 0.5 ml and then quantitatively transferred
to a 1.0 ml volumetric tube. Final sample volume was
adjusted to 1.0 ml either by further concentrating with
a gentle stream of nitrogen or by adding additional
methylene chloride. 5.0�l of internal standard was
added (Z-14J from Accustandard, Inc., New Haven,
CT, USA). The sample was then transferred to a GC
autosampler vial for analysis.

GC/MS analysis was performed on an Agilent
6890 GC with liquid autosampler and J&W Scientific
DB-5-MS column interfaced to an Agilent 5972
mass selective detector. The GC inlet temperature was
280◦C, initial oven temperature was 40◦C and transfer
line was 280◦C. After a 2 min initial hold time, the GC
oven was ramped at 10◦C per minute to 320◦C and
held for 20 min. A splitless injection of 2�l of extract
w g de-

cafluorotriphenylphosphine (DFTPP). After a 10 min
solvent delay, the mass spectrometer was operated in
the positive electron ionization mode using a selected
ion monitoring program for increased sensitivity.
Peaks were identified by comparison to retention time
and ion ratios. A linear five-point calibration curve
based on relative response factors was used to quantify
the individual PAHs in the sample extract.

2.2.2. Tissue analysis
Fish tissue samples ranging in wet weight mass

from 0.4 to 0.9 g were extracted for PAHs using a
matrix solid phase dispersion (MSPD) method (Barker
1et al., 1993). Briefly, the tissue was weighed and
combined with 5 g of dry, pre-cleaned C-18 solid phase
material (Varian, Inc. Scientific Instruments, Walnut
Creek, CA, USA) in a glass mortar, spiked with 25�l
of a solution containing 40�g/ml each of five deuter-
ated surrogate standards (Ultra Scientific, Inc., North
Kingstown, RI, USA) and then thoroughly ground into
a homogeneous powder with a glass pestle. The C-18
was then transferred quantitatively into the barrel of
a disposable 10 ml plastic syringe plugged at the end
with a 4 mm glass fiber filter and a small amount of
inactivated glass wool. The MSPD columns were then
eluted as follows: the column bed was first saturated
with approximately 2 ml of dichloromethane (Baker
Scientific, Phillipsburg, NJ) and allowed to stand for
20 min. Then, an additional 8 ml of dichloromethane
followed by 8 ml of pesticide grade hexane was passed
t lute
as used. The mass spectrometer was tuned usin
 hrough each MSPD column and allowed to e
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by gravity into a 40 ml glass vial. In some cases the
solvent was slowly forced through the column using
the plunger of the syringe. The solvent eluant was
then evaporated to approximately 2 ml under a stream
of pure nitrogen, transferred quantitatively to a 4 ml
amber glass vial and further evaporated under nitrogen
to a final volume of 200�l. Samples were then stored
at−20◦C until analyzed by GC/MS.

The individual PAH as well as isomer group sums
were quantified by the multiple selected ion monitoring
GC/MS method adapted fromMeans (1998). Analysis
was performed on 2�l samples of the extracts using
a Hewlett-Packard (AG) 5890A gas chromatograph
equipped with the capillary column (AG DB-5MS)
(30 m × 0.025 mm i.d.) directly interfaced to an H-P
5970 mass selective detector (MSD), equipped with
an autosampler. A temperature program for the GC
oven using a series of linear temperature ramps from
50 to 300◦C was developed in order to optimize the
separation of the analytes. The mass spectrometer was
tuned daily and/or after each 16 h of analysis using
perfluorotributylamine (PFTBA). An initial five-point
calibration curve was prepared and continuing calibra-
tions for all analytes were run at the beginning and end
of each analysis group. A multiple selected ion mon-
itoring method (SIM) was developed which employed
monitoring of up to 18 ions in each of 16 retention time
windows. This method included ions selected to allow
for quantification of over 60 individual PAHs using
authentic individual standards or mixtures (Chiron AS,
T
o c.,
N for
t
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m a-
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d for
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w each
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o on
l
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w ctors

to obtain a sample detection limit for the fish samples
of typically 4–10 ng/g wet wt (ppb). Samples were
spiked immediately before injection with 10�l of a
100�g/ml solution of DBOFP as an internal standard.

2.3. Hierarchical model and parameter estimation

The hierarchical framework for parameter estima-
tion is illustrated inFig. 2. It has two components: the
individual level and the population level. In this model,
ϕij, andθij, denote known model parameters treated as
constants, and uncertain or variable model parameters,
respectively for parameter,i, and individual,j, treated
as random variables.Table 3describes the prior dis-
tributions used for the uncertain parameters that were
determined from a broad knowledge base or historic
site-specific measurements. In this study, the random
variables can be divided into three categories: (1) inputs
which were measured with temporal or spatial vari-
ability; (2) a site-specific measurement providing in-
formation about a model input parameter, such as an
upper or lower bound; and (3) unobservable model pa-
rameters. The first category describes the sediment and
water PAH concentrations where measurement uncer-
tainty, temporal and spatial variability exist. We used
site-specific measurements and determined the prior
distribution from these data collected over the project
period. The second category includes values of sed-
iment organic carbon fraction and the concentration
of suspended organic matter, which were not directly
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rondheim, Norway). Internal standard, 4,4′-dibromo-
ctafluoro biphenyl (DBOFP, Ultra Scientific, In
orth Kingstown, RI, USA) and spike recoveries

issues typically ranged from 80 to 100%.
Detection limits for each analyte in the sam

atrix type were estimated from statistical inform
ion derived from standard calibration curves use
etermine instrument detection limits, corrected

he type-of-sample concentration factor. Triplic
nalyses of a five-point standard calibration cu
ere used to obtain a mean standard deviation for
nalyte. This value was then multiplied by a fac
f 3 (Taylor, 1987), to obtain an instrument detecti

imit in units of ng on-column. The use of the 3×
ultiplier has the advantage of maximizing the amo
f numerical values reported in data sets obta

n research projects. The instrument detection li
ere then corrected for average concentration fa
easured, but are required by the model. Sedimen
arbon fraction and total suspended particulates
easured and were used as upper bounds for the

ment organic carbon fraction and the concentra
f suspended organic matter in water. Unobserv
odel parameters in the third category include the

ake rate constant,kuf , the dietary uptake rate consta
df , and the total elimination rate constant,kelim, from
q. (4)for small fish and spotted gar.
Gar tissue PAH concentrations (Cgar) were mea

ured in individual fish captured at different locatio
n the LaBranche Wetlands. A lognormal likeliho
as assigned to the data with the geometric mea

he gar tissue concentration predicted by the food-
ioaccumulation model and the variance sampled
n inverse-gamma distribution (the conjugate prio
normal model with known mean but unknown v

nce).
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Fig. 2. Diagram of a statistical model describing the dependence between model variables. Circular nodes represent unknown variable parameters,
and square nodes represent observed (or experimental) data. The arrows show the dependence between model parameters and observed data.
The prior sampling distributions listed were used after natural log-transformation of the raw data.

2.3.1. Variable input parameters
The variable input parameters (θi) are the kinetic

rate constants for the small fish and spotted gar
(i.e., kuf , kdf , andkelim) from Eq. (4), sediment and
water PAH concentration, concentration of suspended
organic matter in water, and the sediment organic
carbon fraction. At the individual level, the rate
constants, sediment and water concentrations were
sampled from lognormal distributions with geometric
means and geometric standard deviations sampled
from population-level or hyperprior distributions. The
organic matter concentration and sediment organic
carbon fraction were sampled uniformly with their
respective upper bounds of total suspended particu-
lates and sediment total carbon fraction, respectively,
sampled from a lognormal distribution.

Vague prior distributions were assigned tokuf and
kelim by considering the data on these parameters from
all types of aquatic systems (i.e., marine, estuarine, and
freshwater), for all species of fish, and for all PAHs.
The rationale for using a vague prior is that measured
gar concentrations will improve the estimate of the
rate constants for this species and the PAHs of interest.
At the population level, the means (µi) of the uptake
and elimination rate constants were sampled from
a lognormal distribution with geometric mean and

geometric standard deviation based on values reported
in the literature for uptake (Spacie et al., 1983; Djomo
et al., 1996; Baussant et al., 2001) and elimination
(Niimi, 1987; Niimi and Dookhran, 1989; Baussant
et al., 2001) rate constants. Total elimination rate
constants were either reported as such or determined
from the reported half-life, wherekelim is 0.693/t1/2.
If a half-life was reported as less than a value,X, the
valueX was used in calculating the geometric mean
and geometric standard deviation of the lognormal dis-
tribution. The hyperprior variances (Σ2

i ) were sampled
from inverse-gamma distributions followingBernillon
and Bois (2000)andGelman et al. (1995)with a shape
parameter,α, equal to two and the scale parameter,β,
equal to the sample variance after log-transformation.

Data for the dietary uptake rate constant,kdf ,
were not found explicitly in the literature so the
hyperprior distribution was determined using the
correlation described byGobas (1993)based upon
octanol–water partition coefficient, site-specific, mea-
sured, fish weights (forG. affinis, one of the small fish
found in the gar diet andL. oculatus) and water tem-
peratures.

kdf = 0.022 e0.06Tw

(2.3 + 5.3 × 10−8Kow)V 0.15
f

(6)
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Table 3
Population-level prior distribution parameters and posterior parameters obtained through Markov Chain Monte Carlo simulation

Parameter Variable Prior forµa Prior forΣ2b Posterior forµa PosteriorΣ2

Mean S α β Mean S Medianb

Total water concentration,Cwt (Coordinated Instrumentation Facility)
Naphthalene 0.13 0.36 2 1.2 0.01 9.8× 10−3 0.42
Phenanthrene 0.03 0.02 2 0.49 0.01 9.0× 10−3 0.22
Benzanthracene 0.05 0.01 2 0.09 0.05 0.01 0.052

Sediment concentration,Cs (Coordinated Instrumentation Facility)
Naphthalene 48 30 2 0.34 49 31 0.23
Phenanthrene 58 31 2 0.29 51 35 0.18
Benzanthracene 95 67 2 0.67 94 61 0.37

Water total suspended particulates, TSPc (T. Bianchi, personal communication)
Naphthalene 2.0× 10−4 8.0× 10−5 1.9× 10−4 6.0× 10−5

Phenanthrene 2.0× 10−4 8.0× 10−5 1.8× 10−4 5.7× 10−5

Benzanthracene 2.0× 10−4 8.0× 10−5 1.8× 10−4 6.9× 10−5

Sediment total carbon fractiond, TCF (G. Flowers, personal communication)
All PAHs 0.08 0.02 0.07 0.02

Water uptake rate constant,kuf , for gar/small fish (Spacie et al., 1983; Djomo et al., 1996; Baussant et al., 2001)
Naphthalene 929/929 686/686 2/2 0.82/0.82 799/1111 630/1294 0.36/0.57
Phenanthrene 929/929 686/686 2/2 0.82/0.82 541/862 383/685 0.33/0.49
Benzanthracene 929/929 686/686 2/2 0.82/0.82 1382/1187 1062/1273 0.42/0.58

Dietary uptake rate constant,kdf , for gar/small fish (Gobas, 1993)e

Napthalene 0.05/0.18 0.02/0.06 2/2 0.19/0.16 0.04/0.18 0.02/0.06 0.13/0.10
Phenanthrene 0.05/0.18 0.02/0.06 2/2 0.19/0.16 0.05/0.18 0.03/0.08 0.11/0.11
Benzanthracene 0.05/0.18 0.02/0.06 2/2 0.19/0.16 0.05/0.20 0.02/0.07 0.12/0.10

Total elimination rate constant,kelim, for gar/small fish (Niimi, 1987; Niimi and Dookhran, 1989; Baussant et al., 2001)
Naphthalene 0.50/0.50 0.29/0.29 2/2 0.60/0.60 0.96/0.5 0.79/0.50 0.25/0.39
Phenanthrene 0.50/0.50 0.29/0.29 2/2 0.60/0.60 0.63/0.47 0.38/0.37 0.22/0.37
Benzanthracene 0.50/0.50 0.29/0.29 2/2 0.60/0.60 0.35/0.46 0.18/0.34 0.22/0.36

Mean and standard deviation (S) for µ reported in natural space andβ is the sample variance after log-transformation of the data. Source of prior
data cited.

a Mean and sample standard deviation,S, in natural space. Lognormal distributions were used to sample the parameters.
b Inverse-gamma distribution used to sample the population-level variances. When the shape parameter,α = 2, the scale parameter,β is equal

to the expected value of the random variate. Values reported in log-space.
c Measured total suspended particulates sampled at the population level according to a lognormal distribution, then used as the upper bound

for uniformly sampling the suspended organic matter concentration in water at the individual level.
d Measured total carbon fraction sampled at the population-level according to a lognormal distribution, then used as the upper bound for

uniformly sampling the sediment organic carbon fraction at the individual level. Posterior means and standard deviations were the same for all
PAHs.

e Dietary uptake rate constant correlation used with site-specific water temperature and fish weights.

whereTw is the water temperature in degrees centi-
grade andVf the fish weight in kilograms. Water
temperature and fish weights used inEq. (6) were
measured in the LaBranche Wetlands over the
1996–1997 sampling period. Similar to the other rate
constants, the hyperprior variance (Σ2

i ) was sampled
from an inverse-gamma distribution.

Measurements of total water and sediment PAH con-
centrations were made at different sampling locations
in January, March and May 1997. Thirty water con-
centration measurements from four different sites in
Bayou Trepagnier were used to define the hyperprior
parameters of the lognormal distribution for the total
water concentration. The hyperprior parameters for the
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sediment PAH concentrations were based upon 13 mea-
surements made at six different sites over the same time
period.

Prior data for the site-specific concentration of water
suspended organic matter and sediment organic carbon
fraction were unavailable, but TSP in water (T. Bianchi,
personal communication) and TCF in the sediment (G.
Flowers, personal communication) were measured and
used as upper bounds. Based upon the data throughout
the bayou, the population-level prior distributions for
these were found to be lognormal, and the randomly
sampled values were used as the upper bound to sam-
pling the actual model input parameters (Com andfoc) at
the individual level from uniform distributions. Eleven
measurements of TSP from four different locations in
September 1996, February and May 1997 were used to
determine the geometric mean and geometric standard
deviation of the hyperprior, lognormal distribution. The
randomly sampled value of TSP was then used as an up-
per bound on the concentration of suspended organic
matter in water sampled uniformly at the individual
level. In summer 1995, Flowers measured TCF at 15
sites in Bayou Trepagnier, which were used to define
the hyperprior parameters of the lognormal distribu-
tion. Similar to the method of samplingCom, foc was
sampled from a uniform distribution using the sampled
TCF value as the upper bound.

We used the Metropolis-Hastings algorithm in MC-
Sim (Bois and Maszle, 1997) to perform the MCMC
simulations. The advantage of using this algorithm over
t di-
t d to
b lity
m
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Gelman and Rubin, 1996) recommend the use of mul-
tiple chains. We chose to monitor the convergence of
our Markov chains by the scale reduction method de-
scribed inGelman et al. (1995), which compares the
variance between and within sequences using an Ex-
cel macro we developed in Microsoft Visual Basic for
Applications. As recommended by Gelman, values be-
tween 1.0 and 1.2 indicate acceptable convergence and
served as our criteria in this study.

3. Results

3.1. Parameter estimation

The distributions inFig. 2 were used to sample
the parameters after logarithmic transformation of the
data. Each naphthalene chain required 15,000 iterations
to converge in contrast to phenanthrene and benzan-
thracene which required 25,000 iterations per chain.
Table 3lists the posterior mean and standard devia-
tion in natural space for the population-level random
variables. Unlike the median, the mean cannot be trans-
formed directly from log to natural space by exponenti-
ation because the transformation is non-linear. For ex-
ample, we found posterior parameter means that were
lower than the prior in log-space, but upon exponen-
tiation of the individual values to natural space and
recalculation of the mean, the posterior mean (in natu-
ral space) was found to be higher than the prior mean.
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he Gibbs sampler, for example, is that the full con
ional distributions of the parameters do not nee
e defined. It is also efficient for complex probabi
odels and hierarchical models (Gelman et al., 1995).
he posterior parameter distribution was obtaine
rst running an initial sequence of 500 iterations
ach of four separate chains, checking for converge
nd restarting the chain to perform subsequent in
ents of 5000 iterations saving the last 3000 iterat

o monitor convergence. Each chain was initialized
random selection of parameters using a different
om seed.

There is some debate in the literature over wh
oints comprise a representative sample from the

ionary posterior distribution. A chain must be run lo
nough to reach a stationary distribution, but som
ue that after the “burn-in” period one long chain
ufficient (Geyer, 1992) and others (Bois et al., 1996b;
hus, we report the mean and standard deviations
ulated after exponentiation of the 12,000 posterio
ameter values.

The posterior naphthalene total water concen
ion was an order of magnitude lower than the p
ean value, but the phenanthrene and benzanthr
ean concentrations were fairly close to the p
ean. Sediment mean concentrations and standa

iations for the three PAHs were close to the p
alues.

TSP was measured at three different sites in Sep
er 1996, February and May 1997. The posterior m

or all PAHs are comparable and consistent with ex
ations since this is an environmental, location-spe
arameter and not a chemical dependent one. S
ecreases in the posterior means and standard d

ions were found. TSP was used as an upper b
or sampling the concentration of organic matter a
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Fig. 3. Box plots of the data used to determine the prior distribution and the posterior distributions for (A) the uptake rate constant,kuf ; (B) the
elimination rate constantkelim; and (C) the dietary ingestion rate constant,kdf . The mid-line of the box represents the median, the outer edges
represent the 25th and 75th percentiles, the whiskers represent the 10th and 90th percentiles, and the filled circles encompass the 5th and 95th
percentiles. NA: naphthalene, PH: phenanthrene, BZ: benzanthracene, sf: small fish and gar: spotted gar.
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individual level whose posterior mean over all itera-
tions and individuals by chemical ranged from 9.4×
10−5 ± 6.0× 10−5 for naphthalene to 9.5× 10−5 ±
6.0× 10−5 for phenanthrene and benzanthracene.

Similarly, TCF was used as the upper bound for sam-
pling the sediment organic carbon fraction. Its poste-
rior mean decreased from 0.08 to 0.07 and the variance
remained the same. Sediment organic carbon fraction
ranged from 0.035± 0.02 for benzanthracene to 0.037
± 0.02 for naphthalene and phenanthrene.

Fig. 3contains box plots of the population-level pos-
terior distributions for the water uptake (Fig. 3A), total
elimination (Fig. 3B), and dietary uptake (Fig. 3C) rate
constants including plots of the data that were used to
determine the population-level prior distributions. Dif-
ferences in the posterior distributions between small
fish and gar for each chemical can be seen, particularly
in the elimination and dietary uptake rate constants.
The posterior medians of the water uptake rate con-
stants for naphthalene and phenanthrene are 6.5 and
6.1 (in natural space, 693 and 443 l/kg per day), re-
spectively, slightly lower than the prior.Baussant et
al. (2001)reported uptake rate constants in juvenile
turbot of 6.0 (396 l/kg per day) for naphthalene and
6.5 (646 l/kg per day) for phenanthrene. In zebrafish,
Djomo et al. (1996)found the uptake rate constant to
be 7.7 (2280 l/kg per day) for phenanthrene. For ben-

F ng the simulation.

zanthracene, the posterior medians are slightly higher
than the prior, 6.7 (823 l/kg per day) for small fish, and
7.0 (1076 l/kg per day) for gar.

The elimination rate constants for all PAHs in small
fish were updated from a prior median of−0.78 (in nat-
ural space, 0.46 day−1) to a posterior median of−1.0
(0.37 day−1). In gar, the median for naphthalene was
the highest at−0.37 (0.69 day−1) and benzanthracene
was found to be the lowest at−1.2 (0.30 day−1). The
posterior gar naphthalene and benzanthracene elimina-
tion rate constants are consistent with values reported
byNiimi (1987)of −0.37 (0.69 day−1) in trout, salmon
and minnow via water exposure, and−1.1 (0.35 day−1)
in trout via dietary exposure, respectively. Our median
posterior elimination rate constant for phenanthrene in
gar was−0.61 (0.54 day−1), which falls between the
values reported byNiimi (1987)of −2.6 (0.077 day−1)
for trout via dietary exposure and−0.37 (0.69 day−1)
in minnow via water exposure.Baussant et al. (2001)
reported values measured in juvenile turbot through
water exposure of−0.062 (0.94 day−1) for naphtha-
lene and−0.37 (0.69 day−1) for phenanthrene.

The posterior medians of the dietary uptake rate
constants are essentially equal to the prior means with
significant differences between the values for small
fish and gar (Fig. 3C). In small fish, the posterior
medians ranged from−1.8 (0.17 kg/kg per day) for
ig. 4. The predicted PAH concentrations in gar, subject 1, usi
 12,000 posterior parameter vectors obtained through MCMC
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naphthalene and phenanthrene to−1.7 (0.18 kg/kg per
day) for benzanthracene. Gar posterior medians ranged
from −3.2 (0.041 kg/kg per day) for naphthalene to
−3.0 (0.050 kg/kg per day) for benzanthracene.

In Table 3, gar posterior water uptake and elimina-
tion rate constants show greater changes in the posterior
means than the small fish. As noted earlier, the dietary
uptake rate constants were only slightly changed for
both gar and small fish.

Median posterior population-level variances were
all less than the sample variances (β) used in the prior
distributions. In natural space (Σ2 median inTable 3
exponentiated), all of the dietary uptake rate constant
variances for both gar and small fish are equal to 1.1.
Across all PAHs, the uptake rate constant variances
ranged from 1.3 to 1.5 for gar and 1.6 to 1.8 for small
fish. Similarly, the total elimination rate constant vari-
ances were approximately 1.2–1.3 for gar and 1.4–1.5
for small fish. Differences across PAHs exist for the
estimated variances of total water concentration and
sediment concentration.

3.2. Predictions of organism concentrations

Fig. 4 shows predicted concentrations using the
12,000 posterior parameter vectors obtained for the
first gar out of 11 analyzed in this study. The predicted
naphthalene concentration distribution encompasses
the measured concentration at approximately the 25th
percentile. For phenanthrene and benzanthracene, the
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without starting over. That is, the current posterior
parameter distribution can be used as the prior for
simulations based on the likelihood of the new data.
In particular, estimates of the small fish rate constants
could be refined with measurements of small fish
tissue concentrations, tissue measurement in the other
food web organisms could also reduce the variability
in the parameter estimate and subsequent predictions.
Other model parameters treated as constants could also
be allowed to vary given sufficient prior information.
A disadvantage of the Bayesian approach is that it re-
quires a large amount of data, but as demonstrated here,
the method is capable of refining estimates starting with
vague or uninformative priors and site-specific data.

The steady-state bioaccumulation model used here,
like the equilibrium partitioning approach, will often
oversimplify natural ecosystem dynamics in contrast
to time-dependent model formulations. An advantage
of the hierarchical model and Markov Chain Monte
Carlo simulations we used to estimate the model pa-
rameters is that it can be applied to a set of ordinary dif-
ferential equations (ODEs) describing time-dependent,
ecosystem dynamics. This technique has been used in
estimating parameters for physiologically based phar-
macokinetic models, which are formulated as sets of
ODEs (Bois et al., 1996a,b; Bernillon and Bois, 2000).

4.2. Environmental conditions

The water naphthalene posterior mean concentra-
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easured value is the median of the predicted con
rations.

. Discussion

.1. Parameter estimation

We demonstrated a Bayesian approach to
ating parameters in a food-web bioaccumula
odel. The method is feasible and appropriate
se in environmental studies where temporal, spa
nd inter-individual variability and uncertainty can
e controlled or minimized. Rather, they are r
haracteristics of the system, which do not nee
e averaged as inputs into a mathematical mo
ne advantage of this approach is that as new
ecome available, parameter estimates can be up
ion decreased by an order of magnitude. Of the
ater concentrations that determined the param
f the prior distribution for naphthalene, 28 of th
anged between 0.01 and 0.09�g/l with two values o
.3 and 1.6�g/l. Thus, posterior mean value of 0.

s a reasonable value for the naphthalene total w
oncentration. Water concentrations for the other c
ounds did not show outliers of the magnitude s
ith naphthalene.
At the individual level, there were no significa

ifferences in the water and sediment PAH con
rations, water suspended organic matter, and sed
rganic carbon fractions. The gar were captured a

erent locations within the LaBranche Wetlands,
hey likely do not remain in one location through
heir lifetime. It is reasonable that the water conc
ration distributions obtained for individual gar do n
how variation with capture location because meas
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ments actually show little spatial dependence. In con-
trast, the prior sediment concentrations have order of
magnitude, site-specific differences, but the gar tissue
concentration depends upon the sediment concentra-
tion only through benthic prey in its diet. This is also
true for the sediment organic carbon fraction depen-
dence. Thus, having PAH concentration measurement
in benthic organisms should lead to sediment concen-
trations that reflect sampling location variability.

4.3. Kinetic rate constants

Kinetic rate constants in the literature were mea-
sured under different conditions, in different species
of fish, and serve as a reference point for comparison
with our findings for small fish and spotted gar. Essen-
tially, all previously reported uptake and elimination
rate constants fall between the 25th and 75th percentile
(within the box inFig. 3) of the small fish and spot-
ted gar distributions indicating that these differences
are not statistically significant given our level of uncer-
tainty. Exceptions include an uptake rate constant for
phenanthrene in zebrafish (Djomo et al., 1996) which
is near the 95th percentile of our estimate for small fish
and outside the 95th percentile for gar. Compared to
our small fish elimination rate constant distributions:
(1) the values reported by Niimi for water naphtha-
lene exposure fall between the 75th and 90th percentile
whereas Baussant et al. report a value that is between
the 90th and 95th percentile; and (2) for phenanthrene
e . re-
p t
l ina-
t diet
o
p r.

ea-
s ore
m ed to
b f the
g usly
r

5
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prior distribution for naphthalene water concentration
that started far from the posterior, we were able to esti-
mate the parameter at a more reasonable level that was
consistent with the prior data when two outliers were
removed. We also obtained kinetic uptake and elim-
ination rate constants in gar that are consistent with
values published in the literature for each PAH of in-
terest after starting with a vague prior that included data
measured in different fish species from estuarine, ma-
rine, and freshwater systems for all PAHs. This study
demonstrated the utility of the Markov Chain Monte
Carlo approach in estimating parameters from a food-
web bioaccumulation model and provides a method for
quantifying uncertainty and variability in parameter es-
timates and in model predictions.
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