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Robust Model-based Learning via Spatial-EM
Algorithm

Kai Yu, Xin Dang, Henry Bart, Jr. and Yixin Chen, Member, IEEE

Abstract—This paper presents a new robust EM algorithm for the finite mixture learning procedures. The proposed Spatial-EM
algorithm utilizes median-based location and rank-based scatter estimators to replace sample mean and sample covariance
matrix in each M step, hence enhancing stability and robustness of the algorithm. It is robust to outliers and initial values.
Compared with many robust mixture learning methods, the Spatial-EM has the advantages of simplicity in implementation and
statistical efficiency. We apply Spatial-EM to supervised and unsupervised learning scenarios. More specifically, robust clustering
and outlier detection methods based on Spatial-EM have been proposed. We apply the outlier detection to taxonomic research
on fish species novelty discovery. Two real datasets are used for clustering analysis. Compared with the regular EM and many
other existing methods such as K-median, X-EM and SVM, our method demonstrates superior performance and high robustness.

Index Terms—Clustering, EM algorithm, finite mixture, outlier detection, robustness, spatial rank
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1 INTRODUCTION

Finite mixture models are powerful and flexible to
represent arbitrarily complex probabilistic distribu-
tion of data. Mixture model-based approaches have
been increasingly popular. Applications in a wide
range of fields have emerged in the past decades.
They are used for density estimation in unsupervised
clustering [28], [15], [13], [50], [9], [25], for estimat-
ing class-conditional densities in supervised learn-
ing settings [1], [15], [36], and for outlier detection
purposes [38], [30], [54]. Comprehensive surveys on
mixture models and their applications can be found
in the monographs by Titterington et al. [46] and
McLachlan and Peel [29].

Usually parameters of a mixture model are esti-
mated by the maximum likelihood estimate (MLE)
via the expectation maximization (EM) algorithm [11],
[27]. It is well known that the MLE can be very
sensitive to outliers. To overcome this limitation,
various robust alternatives have been developed.
Rather than maximizing the likelihood function of
Gaussian mixtures, Markatou [23] used a weighted
likelihood with down-weights on outliers. Neykov
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et al. [26] proposed a weighted trimmed likelihood
framework to accommodate many interesting cases
including the weighted likelihood method. Fujisawa
and Eguchi [16] utilized a so-called β-likelihood to
overcome the unboundedness of the likelihood func-
tion and sensitivity of the maximum likelihood esti-
mator to outliers. Qin and Priebe [35] introduced a
maximum Lq-likelihood estimation of mixture mod-
els and studied its robustness property. Peel and
McLachlan [33], [28] considered modelling a mixture
of t distributions to reduce the effects of outliers.
Shoham [42] also used t mixtures to handle outliers
and agglomerated an annealing approach to deal with
the sensitivity with respect to initial values.

Another common technique for robust fitting of
mixtures is to update the component estimates on the
M-step of the EM algorithm by some robust location
and scatter estimates. M-estimator has been consid-
ered by Campbell [5], Tadjudin and Landgrebe [45].
Hardin and Rocke [17] used Minimum Covariance
Determinant (MCD) estimator for cluster analysis.
Bashir and Carter [1] recommended the use of S esti-
mator. In this paper, we propose to apply spatial rank
based location and scatter estimators. They are highly
robust and are computationally and statistically more
efficient than the above robust estimators [56]. We
develop a Spatial-EM algorithm for robust finite mix-
ture learning. Based on the Spatial-EM, supervised
outlier detection and unsupervised clustering meth-
ods are illustrated and compared with other existing
techniques.

The remainder of the paper is organized as fol-
lows. Section 2 reviews mixture elliptical models and
the EM algorithm. Section 3 introduces spatial rank
related statistics. Section 4 presents the Spatial-EM
algorithm for mixture elliptical models. Section 5
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formulates mixture model based novelty detection.
We apply the Spatial-EM based outlier detection to
new species discovery in taxonomy research. In Sec-
tion 6, the clustering method based on robust mixture
learning is illustrated using two data sets from UCI
machine learning repository. We end the paper in Sec-
tion 7 with some concluding remarks and a discussion
of possible future work.

2 REVIEW OF EM ALGORITHM

2.1 Finite Mixture Models

A d-variate random vector X is said to follow a K-
component mixture distribution if its density function
has the form of

f(x|θ) =
K∑
j=1

τjfj(x|θj),

where fj(x|θj) denotes the conditional probability
density function of x belonging to the jth compo-
nent parametrized by θj , τ1, ..., τK are the mixing
proportions with all τj > 0 and

∑K
j=1 τj = 1, and

θ = {θ1, ...,θK , τ1, ..., τK} is the set of parameters.
For the mixture elliptical distributions, fj(x|θj) can

be written as

fj(x|µj ,Σj) = |Σj |−1/2hj{(x− µj)TΣ−1j (x− µj)},
(2.1)

for some µj ∈ Rd, a positive definite symmetric d× d
matrix Σj . The family of mixture elliptical distribu-
tions contains a quite rich collection of models. The
most widely used one is the mixture of Gaussian
distributions, in which

hj(t) = (2π)−d/2e−t/2. (2.2)

The mixture of t distributions and Laplace distribu-
tions are commonly used in modeling data with heavy
tails. For the mixture t distributions,

hj(t) = c(νj , d)(1 + t/νj)
−(d+νj)/2,

where νj is the degree freedom and c(νj , d) is the
normalization constant. As a generalization of mul-
tivariate mixture Laplace distribution, the mixture of
Kotz type distribution [34] has the density

hj(t) =
Γ(d/2)

(2π)d/2Γ(d)
e−
√
t. (2.3)

For detailed and comprehensive accounts on mixture
models, see McLachlan and Peel [29].

2.2 EM algorithm

In the EM framework for finite mixture models, the
observed sample X = {x1, ...,xn} are viewed as in-
complete. The complete data shall be Z = {xi,yi}ni=1,

where yi = (y1i, ..., yKi)
T is an “unobserved ” indica-

tor vector with yji = 1 if xi is from component j, zero
otherwise. The log-likelihood of Z is then defined by

Lc(θ|Z) =

n∑
i=1

K∑
j=1

yji log[τjfj(xi|θj)]. (2.4)

The EM algorithm obtains a sequence of estimates
{θ(t), t = 0, 1, ...} by alternating two steps until some
convergence criterion is met.

E-Step: Calculate Q function, the conditional expec-
tation of the complete log-likelihood, given X and
the current estimate θ(t). Since Yji is either 1 or 0,
E(Yji|θ(t),xi) = Pr(Yji = 1|θ(t),xi), which is denoted
as T (t)

ji . By the Bayes rule, we have

T
(t)
ji =

τ
(t)
j fj(xi|θ(t)i )∑K

j=1 τ
(t)
j fj(xi|θ(t)j )

. (2.5)

T
(t)
ji ’s can be interpreted as soft labels at the tth

iteration. Replacing yji with Tji in (2.4), we have
Q(θ|θ(t)).

M-step: Update the estimate of the parameters by
maximizing the Q function

θ(t+1) = argmaxθQ(θ|θ(t)). (2.6)

For convenience, we define

w
(t)
ji =

T
(t)
ji∑n

i=1 T
(t)
ji

. (2.7)

w
(t)
ji can be viewed as the current weight of xi con-

tributing to component j. In the case of Gaussian mix-
ture, maximizing Q with respective to {µj ,Σj , τj}Kj=1

provides an explicit close-form solution :

τ
(t+1)
j =

∑n
i=1 T

(t)
ji∑K

j=1

∑n
i=1 T

(t)
ji

=
1

n

n∑
i=1

T
(t)
ji , (2.8)

µ
(t+1)
j =

n∑
i=1

w
(t)
ji xi, (2.9)

Σ
(t+1)
j =

n∑
i=1

w
(t)
ji (xi − µ(t+1)

j )(xi − µ(t+1)
j )T .

(2.10)

EM estimation has been proved to converge to
maximum likelihood estimation (MLE) of the mixture
parameters under mild conditions [11], [53], [27]. The
above simple implementation makes Gaussian mix-
ture models popular. However, a major limitation of
Gaussian mixture models is their lack of robustness
to outliers. This is easily understood because max-
imization of likelihood function under an assumed
Gaussian distribution is equivalent to finding the
least-squares solution, whose lack of robustness is
well known. Moreover, from the perspective of robust
statistics, using sample mean (2.9) and sample covari-
ance (2.10) of each component in the M-step causes the
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sensitivity problem because they have the lowest pos-
sible breakdown point. Here the breakdown point is a
prevailing quantitative robustness measure proposed
by Donoho and Huber [12]. Roughly speaking, the
breakdown point is the minimum fraction of “bad”
data points that can render the estimator beyond any
boundary. It is clear to see that one point ‖x‖ → ∞ is
enough to ruin the sample mean and sample covari-
ance matrix. Thus, their breakdown point is 1/n.

As a robust alternative, mixtures of t-distributions
have been used for modeling data that have wider
tails than Gaussian’s observations [33], [42]. The EM
implementation treats each t-distributed component
as a weighted average Gaussian distribution with
weight being a gamma distribution parameterized
by the degree freedom νj . There are two issues in
this approach. One is that there is no closed-form
expression for ν

(t+1)
j in the M-step. Solving a non-

linear equation for νj through a greedy search is
time-consuming. The other issue is a non-vanishing
effect of an outlier on estimating Σ

(t+1)
j . Although

some modifications [20], [21] have been proposed to
address these issues for a single t-distribution and
applied to the mixtures, those estimators, including
M-estimators, are not strictly robust in the sense of
the breakdown point, especially in high dimensions.
The phenomena of low breakdown point of MLE of
t-mixture had been observed by Tadjudin [45] and
Shoham [42]. Huber [19] found that the breakdown
point of scatter M-estimator in d dimension is less
than 1/(d+ 1), which is disappointingly low.

We propose a new robust EM algorithm for mix-
tures of elliptical distributions, utilizing robust loca-
tion and scatter estimators in each M-step. The estima-
tors are based on multivariate spatial rank statistics,
achieving the high possible breakdown point, which
is asymptotically 1/2. As shown later, our method can
be viewed as a least L1 approach in contrast to a least
squared (L2) approach in the regular EM.

3 SPATIAL RANK RELATED STATISTICS

3.1 Spatial Rank, Depth, and Median
We start the discussion on spatial rank in one dimen-
sion. We shall clarify that the term “spatial” refers
to data space, not usual geographic space. Given
a sample X = {x1, ..., xn} from a distribution F ,
it is well known that the sample mean minimizes
the (average) squared distance to the sample, while
the sample median minimizes the (average) absolute
distance. That is, the sample median is the solution of

R(x,X ) = ∇x(
1

n

n∑
i=1

|x− xi|) =
1

n

n∑
i=1

s(x− xi) := 0,

(3.1)
where s(·) is the sign function defined as s(x) =
x/|x| = ±1 when x 6= 0, s(0) = 0. R(x,X ) is called
the centered rank function. The sample median has a

centered rank of 0. For an order statistics without a
tie x(1) < x(2) < · · · < x(n), their centered ranks are
−1 + 1/n,−1 + 3/n, · · · , 1 − 3/n, 1 − 1/n, which are
linear transformations from their naturally-ordered
ranks 1, ..., n. Such a center-oriented transformation
is of vital importance for a rank concept in high di-
mensions where the natural ordering in 1D no longer
exists.

Replacing | · | in (3.1) by Euclidean norm ‖ · ‖, we
obtain a multivariate median and rank function.

R(x,X ) =
1

n

n∑
i=1

s(x− xi) =
1

n

n∑
i=1

x− xi
||x− xi||

, (3.2)

where s(·) is the spatial sign function such that s(x) =
x/‖x‖, (s(0) = 0). R(x,X ) is called the spatial
rank of x with respective to X , and the solution of
R(x,X ) = 0 is called the spatial median. The spatial
median, also termed as geometric median, L1 median,
has a century-long history dating back to Weber [52].
Brown [3] has developed many properties of the
spatial median. Similar to the univariate median, the
spatial median is extremely robust with a breakdown
point of 1/2. For more comprehensive descriptions on
the spatial median, refer to Small [43].

If we replace | · | in (3.1) by the L1 norm, that is
‖x‖L1 = |x1|+...+|xd|, we obtain the component wise
rank and the corresponding median. The component-
wise median has been widely used because of its
conceptual simplicity and computational ease. But the
component-wise median may be a very poor center
representative of data, because it disregards the in-
terdependence information among the variables and
is calculated separately on each dimension. Like its
univariate counterpart, the component-wise median
may not unique, is not affine equivariant and not even
orthogonal equivariant. For those reasons, the spatial
median and spatial rank are more appealing.

The spatial rank provides a relative position of
x with respect to X . Its magnitude yields a mea-
sure of outlyingness of x. It is easy to prove that
‖R(x,X )‖ ≤ 1 by simply applying Jensen’s inequality.
Hence equivalently, we can define the spatial depth
function as 1 − ‖R(x,X )‖. The spatial median is the
deepest point with the maximum spatial depth value
of 1. The spatial depth produces, from the “deep-
est” point (the spatial median), a “center-outward
ordering” of multidimensional data [40]. It is natural
to conduct outlier detection in such a way that an
observation with a depth value less than a threshold
is declared as an outlier. Dang and Serfing [10] studied
properties of depth-based outlier identifiers. Chen et
al. [8] proposed the kernelized spatial depth (KSD)
by generalizing the spatial depth via positive definite
kernels and applied the KSD-based outlier detection
to taxonomic study. We will compare their results on
an experiment of fish species novelty discovery in
Section 5.4.
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The spatial rank R(x,X ) is the average unit direc-
tions to x from sample points of X . Unlike its univari-
ate counterpart, the spatial rank is not distribution-
free; it characterizes the distribution of X , especially
directional information of the distribution. For a bet-
ter understanding, we also consider the population
version

R(x, F ) = Es(x−X),

where X is a random vector from the distribution F .

3.2 RCM and MRCM
Based on spatial ranks, the rank covariance matrix
(RCM) of X , denoted by ΣR(X ), is

ΣR(X ) =
1

n

n∑
j=1

R(xj ,X )RT (xj ,X ). (3.3)

Notice that the spatial ranks of a sample are centered,
i.e., 1

n

∑
jR(xj ,X ) = 0. The RCM is nothing but the

covariance matrix of the ranks. The corresponding
population version is

ΣR(F ) = ER(X, F )RT (X, F ) = cov(R(X, F )).

For an elliptical distribution F with a scatter matrix
Σ, the rank covariance matrix preserves the orienta-
tion information of F . Marden [22] has proved that
the eigenvectors of ΣR are the same as that of Σ.
But their eigenvalues are different. Those results are
easily understood by features of the spatial rank.
Each observation contributes a unit directional vector
to the spatial rank. It gains resistance to extreme
observations, but in the meantime it trades off some
variability measurement. Visuri et al. [49] proposed
to re-estimate dispersion of the projected data on
eigenvectors. The modified spatial rank covariance
matrix (MRCM), Σ̃(X ), is constructed as follows.

1 Compute the sample RCM, ΣR(X ), using
(3.2) and (3.3).

2 Find the eigenvectors u1,u2, ...,ud of ΣR(X )
and denote the matrix U = [u1,u2, ...,ud].

3 Find scale estimates (eigenvalues, princi-
pal values) of X on ui’s directions using
an univariate robust scale estimate σ. Let
λ̂i = σ(uTi x1, ...,u

T
i xn) and denote Λ̂ =

diag(λ̂21, ..., λ̂
2
d).

4 The scatter estimate is Σ̃(X ) = U Λ̂UT .

Different choices of robust σ can be used. Here we
use median absolute deviation (MAD), a well-known
robust dispersion estimator defined as

1.486×medi|xi −med(x1, ..., xn)|.

The scaling factor 1.486 is the reciprocal of the 3rd

quartile of the Gaussian distribution. This particular
choice of scaling factor makes MAD a consistent
estimator of the standard deviation when data are
from a Gaussian distribution.

Yu et al. [56] developed many nice properties of
MRCM. It is affine equivariant, i.e.,

Σ̃(FAX+b) = AΣ̃(FX)AT ,

which is an important feature for a covariance matrix.
Σ̃(X ) is statistically and computationally more effi-
cient than other popular robust covariance estimators
such as M-estimator, MCD, and S-estimator. It is
highly robust with the highest possible breakdown
point, i.e., asymptotically 1/2.

So far, all the merits of spatial median and modi-
fied rank covariance matrix we discussed above are
limited to one single elliptical distribution. For a
mixture elliptical model, we next demonstrate a novel
approach that integrate the EM algorithm with spatial
rank methods.

4 SPATIAL-EM
4.1 Algorithm
The motivation on strengthening the robustness of
regular EM algorithm on a mixture of Gaussian model
comes from the closed forms of µj and Σj in the
M-step. The idea of Spatial-EM is to replace sample
mean and sample covariance matrix on M-step with
the spatial median and MRCM.

Algorithm 1: Spatial-EM Algorithm
1 {Initialization} t = 0, µ(0)

j , Σ
(0)
j = I, τ (0)j = 1/K for ∀j

2 Do Until τ (t)j ’s converge for all j
3 For j = 1 To K
E-Step:
4 Calculate T (t)

ji by Equations (2.5), (2.1), (2.2)
M-Step:
5 Update τ (t+1)

j by Equation (2.8)
6 Define w(t)

ji as Equation (2.7)
7 Find µ(t+1)

j by Algorithm 2

8 Find (Σ̃
(t+1)

j )−1 and |Σ̃(t+1)

j |−1/2 by Alg. 3
9 End
10 t = t+ 1
11 End

Obviously, we need the following two algorithms for
the spatial median and MRCM of jth component.

Algorithm 2: Compute the weighted spatial median
µ

(t+1)
j

1 Input {xi}ni=1, {w(t)
ji }ni=1

2 For ` = 1 To n

3 R
(t)
j (x`) =

∑n
i=1 w

(t)
ji s(x` − xi)

4 End

5 µ(t+1)
j = arg minx`

‖R(t)
j (x`)‖

6 Output {R(t)
j (x`)}n`=1, µ(t+1)

j

Algorithm 3: Compute the inverse of weighted
MRCM Σ̃

(t+1)

j
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1 Input {xi,R(t)
j (xi), T

(t)
ji , w

(t)
ji }ni=1, µ(t+1)

j , τ (t+1)
j

2 Σ
(t+1)
R,j =

∑n
i=1 w

(t)
ji

(
R

(t)
j (xi)

)(
R

(t)
j (xi)

)T
3 Find eigenvectors U j = [uj,1, ...,uj,d] of Σ

(t+1)
R,j

4 For m = 1 To d

5 am = {T (t)
ji u

T
j,m(xi − µ(t+1)

j )}ni=1

6 Delete the dn(1− τ (t+1)
j )e smallest values of

am, denoted as {T (t)
jik
uTj,m(xik − µ

(t+1)
j )}ik

7 λ̂jm = MAD ({T (t)
jik
uTj,m(xik − µ

(t+1)
j )}ik)

8 End

9 Λ̂j = diag(λ̂2j1, ..., λ̂
2
jd)

10 Inverse MRCM (Σ̃
(t+1)

j )−1 = U jΛ̂
−1
j U

T
j

11 Output (Σ̃
(t+1)

j )−1,
∏d
m=1 λ̂

−1
jm

The Spatial-EM terminates when τ
(t)
j gets converged

for all j or the number of iterations exceeds the pre-
specified parameter maxiter. We set maxiter to be 100.
K-means or other clustering methods can be used to
assign initial values to µ(0)

j .

4.2 On M-step
There are several places worth noting on M-step. The
first one is the way to update µ(t+1)

j . Rather than using
a modified Weiszfeld algorithm [48] to coordinate
component weights wji, we confine our search of the
solution in the pool of sample points. i.e.,

µ
(t+1)
j = arg min

xk

∥∥∥∥∥
n∑
i=1

w
(t)
ji s(xk − xi)

∥∥∥∥∥ . (4.1)

This would save a great amount of computational
time and works fine when the sample size is relatively
large.

Secondly, in defining MRCM for a certain com-
ponent at the tth iteration, we need to calculate a
weighted RCM on Step 2 in Algorithm 3. It is not
difficult to see for the points that can be well clustered
into different components, T (t)

ji would be either close
to 1 or 0. It is similar to a binary classification on
whether a point belongs to jth component or not.
So the factor w

(t)
ji = T

(t)
ji /

∑n
i=1 T

(t)
ji , can provide a

proper weight to average the elements that belongs to
the jth component. As the iteration goes on, the jth

component RCM would finally stand out by “picking”
the correct ranks using w

(t)
ji .

Thirdly, the construction of MRCM becomes tricky
because when we compute MAD, we have to consider
soft membership Tji. As shown on Step 5 in Algo-
rithm 3, we project the centered data onto each eigen-
direction, then multiply the factor T

(t)
ji to generate

the whole sequence of {TjiuTj,m(xi − µ(t+1)
j )}i=1,..,n.

Because each T (t)
ji plays as a classifier and degenerates

to 0 if xi does not belong to the jth component, the
above sequence contains many small values (probably
sufficiently close to 0). This suggests that the corre-
sponding data points may not belong to component

j. Therefore we shall omit the smallest dn(1− τ (t+1)
j )e

number of values, and apply MAD on the rest of
projected data. Various experiments have shown that
this approach performs very well.

Fourthly, there is a close relationship between K-
median and our Spatial-EM algorithm. K-median
treats the covariance matrix in each component all
the same as the identity matrix, while our Spatial-
EM estimates the covariance matrix of each compo-
nent robustly at every iteration. Hence essentially K-
median assumes independence among all variables
and all variables having the same scale, which are
very restrictive. K-median uses the component-wise
median for the center of each component, while ours
uses the spatial median. K-medoid is closely related
to K-median method with the center of each cluster
being a sample point. Of course, we have an option
to use the spatial median in the K-median algorithm
but major correlation information among variables
has been lost in the covariance matrix and utilizing
the spatial median seems not help much. On the
other hand, we want to use the spatial median in our
algorithm with the cost of a little extra computation
time since we need to compute spatial ranks anyway.

4.3 More on M-Step
It is interesting to find that the proposed estimator is
closely related to the maximum likelihood estimator
(MLE) of a Kotz-type mixture model. As introduced
in Section 2, a Kotz-type distribution belongs to the
family of elliptical distributions. It has heavier tail
regions than those covered by Gaussion distributions.
Hence it is expected that a Kotz-type mixture model is
more robust to outliers than Gaussian mixture models.

For a mixture of Kotz-type distribution, one can
obtain the MLE by EM algorithm. In each M-step for
component j, maximizing the Q function in (2.6) w.r.t
µj and Σj would be equivalent to minimizing the
objective function ρ(µj ,Σj), which is

n∑
i=1

Tji
(1

2
ln |Σj |+

√
(xi − µj)TΣ−1j (xi − µj)

)
.

Setting the first derivatives of ρ w.r.t µj and Σ−1j to
be a zero vector and a zero matrix respectively, one
can derive:

n∑
i=1

wjis(Σ
−1/2
j (xi − µj)) = 0, (4.2)

Σj =

n∑
i=1

wji
(xi − µj)(xi − µj)T√

(xi − µj)TΣ−1j (xi − µj)
. (4.3)

The above equations look similar to the formula of
the spatial median and spatial rank covariance matrix,
but their computation is more demanding. Rao [37]
proposed an iterative method to solve the above equa-
tions. First initialize Σ̂j , then find the solution of µ̂j in
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0% 10% 20%

# Iters Time (sec) # Iters Time (sec) # Iters Time (sec)

Spatial-EM 5.60 (0.68) 2.65 (0.40) 7.20 (1.20) 3.01 (0.56) 12.3 (5.25) 9.07 (4.17)
Reg-EM 6.80 (0.70) 0.04 (0.01) 20.4 (2.70) 0.14 (0.02) 25.0 (8.15) 0.24 (0.08)
Kotz-EM 5.15 (0.37) 2.57 (0.24) 92.3 (26.1) 53.2 (15.3) 96.7 (19.2) 67.8 (13.2)

TABLE 1
Convergence speed and computation time for each method. Standard deviations are included in parentheses.

(4.2) as µ̂j = Σ̂
1/2

j ν̂j , where ν̂j is the spatial median

of the transformed data Σ̂j
−1/2

xi’s. Plug µ̂j into (4.3)
to update Σ̂j . The iteration stops until convergence.
The MLE of µj is called the generalized spatial me-
dian [37]. It minimizes the (average) Mahalanobis dis-
tances (associated with a covariance matrix) to sample
points. It uses transformation-retransformation tech-
nique [41] to gain affine equivariance property. The
two versions of spatial medians are not same unless
Σj = cI , where c > 0 and the I is the identity matrix.

Although the EM algorithm for a mixture of Kotz
type distribution is mathematically tractable, it suffers
the same problems as that of mixture t-distributions.
First of all, it is computationally expensive to com-
pute. In order to solve for µ̂j and Σ̂j , an inner itera-
tion has to be done in each M-step. It would signifi-
cantly increase the computation complexity. Secondly,
it is not strictly robust in the sense of the breakdown
point. Comparing with Equation (2.10), each xi in
(4.3) is weighted by the reciprocal of its Mahalanobis
distance, hence an outlier has less effect in the MLE of
Kotz mixture than that of Gaussian mixture. However,
the effect of an outlier is non-vanishing. For instance,
for an extreme outlier xi = cµj with c → ∞, since
the estimator of location µj in (4.2) is a median type
estimator. It is not effected by a single outlier. Hence
xi is dominated in in (4.3) and the weight (the recipro-
cal of the Mahalanobis distance) is decreasing linearly
to zero, while the numerator increases quadratically
to infinite. To get the solution of (4.3), Σj should be
in the form of c2Σ. In this case, one extreme outlier
breaks down the estimator. Indeed, if we modify (4.3)
as

Σj =

n∑
i=1

wji
(xi − µj)(xi − µj)T

(xi − µj)TΣ−1j (xi − µj)

to match up the rate of weights, we obtain Tyler-M
estimators [47]. The breakdown point increases to 1/d,
which is still low in high dimensions. The breakdown
point for M estimators is not intuitively obvious. For
a simplified proof, refer to Maronna et al. [24].

4.4 Convergence
Spatial-EM modifies the component estimates on each
M-step by spatial median and rank covariance matrix
to gain robustness at the cost of increasing com-
putational burden and losing theoretical tractability.

For single component elliptically symmetric models,
consistency and efficiency of the rank covariance have
been established in [49] and [56] with an amount
of effort. The extension to a mixture model loses
mathematical tractability due to deletion of a portion
of smallest values of the projected data in the update
of covariance matrix. The whole procedure hybridizes
soft and hard labels at each iteration, which makes
the connection to maximum likelihood approximation
extremely difficult to verify theoretically. In such a
desperate situation, demonstrating empirical evidence
seems to be the only thing we can do.

We consider a sample consisting initially of 200 sim-
ulated points from a 3-component bivariate Gaussian
mixture model, to which contamination points with
increasing proportions 0%, 10%, 20% are added from
a uniform distribution over the range -30 to 30 on each
variate. The parameters of the mixture are,

µ1 = ( −6 6 )T Σ1 =

(
2 0.5

0.5 1

)
µ2 = ( 6 −6 )T Σ2 =

(
3 −.5
−.5 1

)
µ3 = ( 6 6 )T Σ3 =

(
4 −.3
−.3 1

)
with mixture proportions α1 = 0.2, α2 = 0.2 and α3 =
0.6. The procedure is repeated 20 times. The average
and standard deviation of the number of iterations
and computation time are reported in Table 1.

Without outliers, three algorithms have a similar
convergence speed with average 6 iterations. The
computation time of the regular EM is much faster
than that of the other two. With 10% contamination,
the spatial-EM takes 7 iterations to converge, while
the regular EM triples that number and Kotz-EM is
even worse. Out of 20 experiments, Kotz-EM only
converged twice before 100 iterations. With 30% con-
tamination, the regular EM takes twice of iterations as
that of our method. Kotz-EM gets converged only 1
time. Kotz-EM is theoretically sound. The problem is
the practical implementation. With inside and outside
loops, the speed of convergence will slow down. On
the contrary, our method is not well-principled, but its
convergence behavior seems satisfactory practically.

The regular EM takes much less time than ours. We
shall use the regular EM if the assumption of mixture
Gaussian is reasonable. However, in the outlier con-
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tamination case, we may want to pay some compu-
tational cost for good performance, that is when we
should apply robust EM methods. Comparing with
other robust EM methods, our proposed algorithm
have advantages in low computational burden, high
robustness and statistical efficiency. They are widely
suitable for elliptical mixtures. In the next section,
we will use the same simulation study to compare
performance of the spatial-EM and the regular one
under novelty detection problem.

In pattern recognition, finite mixtures are able to
represent arbitrarily complex structure of data and
have been successfully applied to unsupervised learn-
ing as well as supervised learning. Here we focus on
applications of the Spatial-EM to supervised novelty
detection and unsupervised clustering problem.

5 NOVELTY DETECTION

5.1 Outlyingness and Two-type Errors
Usually, an outlier region is associated with an outly-
ingness measure. For a finite mixture model, we use

H(x) =

K∑
j=1

τjG(ξj(x))

as the outlyingness function to define outliers, where
ξj(x) = (x−µj)TΣ−1j (x−µj) and G is the cumulative
distribution function (cdf) of χ2(d) distribution. The
reason behind it is from a well-known result. For a d-
variate random vector X distributed as N(µ,Σ), its
Mahalanobis distance (X − µ)TΣ−1(X − µ) follows
a χ2(d) distribution. Then the corresponding outlier
region is

{x ∈ Rd : H(x) > 1− ε}. (5.1)

There are two-type errors for outlier detection: Type-I
error and Type-II error.

Perr1 = P (identified as outlier|non-outlier),
Perr2 = P (identified as non-outlier|outlier).

Under a Gaussion mixture model, (5.1) has a Type-
I error of ε. For a given data, θ = {τj ,µj ,Σj}Ki=1

are estimated and both types of errors can be esti-
mated to evaluate performance of outlier detection
methods given that those methods have the same
number of parameters. P̂err1 is also called the false
positive (alarm) rate. P̂err2 is the false negative rate
and 1− P̂err2 is the detection rate.

5.2 Estimating the Number of Components
We deal with supervised novelty detection as one-
class learning problem. That is, the training sample
contain “normal” observations, and the outlier detec-
tion is formulated as finding observations that signif-
icantly deviate from the training data. An important
issue for this approach is the selection of the number
of components K. We use a cross-validation approach
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Fig. 1. Comparison between the Spatial-EM and reg-
ular EM on mixture of 3-component Gaussian dis-
tributions with outlier contamination. Ellipses in each
plot represent the estimated 95% probability density
contours of each component.

and a so-called “one-standard-error” rule to choose
the number of components [18]. The method starts
by obtaining a set of candidate models for a range of
values of K (from kmin to kmax) using cross-validation
training data and estimating the average and standard
deviation (sd) of Type-I errors using validation data.
The number of components is then

K̂ = arg min
k
{P̂err1(k) ≤ P̂err1(best k) + sd}. (5.2)

That is, we choose the most parsimonious model
whose mean P̂err1 is no more than on one standard
deviation above the mean P̂err1 of the best model. In
this way, the mixture model avoids the over-fitting
problem and in the meantime preserves good perfor-
mance.
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5.3 Synthetic Data
We consider the same setup as the simulation did
in Section 4.4. Increasing proportions 10%, 20%, 30%
contamination points are added to 200 simulated
points from a 3-component bivariate Gaussian mix-
ture model. We set the parameter ε of the outlier
detector (5.1) to be 0.05, which means that the prob-
ability of Type-I error is controlled to be 5%. Figure
1 compares performance of Spatial-EM based outlier
detection and the regular-EM one. The Type-I errors
are well-kept below 5% for both methods for all cases,
however, Spatial-EM method achieves a much smaller
Type-II error than the regular one. Our method is
able to detect 95% outliers in the 10% contamination
case, while the detection rate for the regular-EM is
only 55%. When the contamination level increases to
20%, the regular-EM method completely fails with the
detection rate 5%, while the proposed method has
the detection rate 95%. Even in the case with 30%
contamination, our method still maintains a 91.7%
detection level.

5.4 New Species Discovery in Taxonomic Re-
search
It is estimated that more than 90 percent of the
world’s species have not been described, yet species
are being lost daily due to human destruction of
natural habitats. The job of describing the earth’s
remaining species is exacerbated by the shrinking
number of practicing taxonomists and the very slow
pace of traditional taxonomic research. We believe that
the pace of data gathering and analysis in taxonomy
can be greatly increased through the integration of
machine learning and data mining techniques into
taxonomic research.

Here, we formulate new species discovery as an
outlier detection problem. We apply the proposed
Spatial-EM based novelty detection method to a small
group of cypriniform fishes, comprising five species of
suckers of the family Catostomidae and five species of
minnows of the family Cyprinidae.

5.4.1 Data Set
The data set consists of 989 specimens from Tulane
University Museum of Natural History(TUMNH).
There are 10 species that include 128 Carpiodes carpio,
297 Carpiodes cyprinus, 172 Carpiodes velifer, 42 Hypen-
teilum nigricans, 36 Pantosteus discobolus, 53 Campos-
toma olibolepis, 39 Cyprinus carpio, 60 Hybopsis storeri-
ana, 76 Notropis petersoni, and 86 Luxilus zonatus. We
assign numbers 1 to 10 to the above species. The
first five species belong to the family Catostomidae
(suckers). The next five species belong to Cyprinidae
(minnows). Both families are classified in the order
Cypriniformes. For each species, 12 features are gener-
ated from 15 landmarks, which are biologically defin-
able points along the body outline. In order to remove

1 2 3 4 5 6 7 8 9 11

−
0
.2

−
0
.1

0
.0

0
.1

Features

5 10 15

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Number of Component

T
y
p
e
−

I 
E

rr
 (

F
P

R
)

Fig. 2. (a) Box-plot of data for species 2 to 10; (b)
One-standard-error rule for choosing the number of
components.

non-shape related variation in landmark coordinates,
those 12 features have been translated to the origin
and scaled to a common unit size. See [7] and [8] for a
detailed description of the feature extraction process.

5.4.2 Results
In this experiment, we treated specimens from one
of the 10 species as a “undiscovered” specimens and
specimens of the other 9 species as known. The nine
known species are modeled as a finite mixture distri-
bution. Figure 2 (a) is the box-plot of each feature for
fishes species 2 to 10. The plot shows that the data
set has a complex and heterogeneous structure (Plots
on the other nine species are similar) and contains a
considerable number of extreme values, which calls
for a robust finite mixture modeling.

We first determine the number of components K̂
using the “one-standard-error” rule by a 10-fold cross
validation. As demonstrated in Figure 2 (b), the num-
ber of components is chosen to be 6. We then use the
whole data to estimate the mixture parameters.

Two criteria are used for assessing performance.
One is Perr1 or Perr2. It evaluates the behavior of
methods under the balanced error rate case, which is
probably the most practical scenario. The other is the
area under the ROC curve (AUC) that measures the
overall performance. Note that the balanced error case
is represented by the intersection of the ROC curve
and the downward diagonal line.

For the first performance metric, the parameter ε of
the outlier detector (5.1) is chosen such that

P̂err1 ≈ P̂err2,

i.e., equal error rates. To demonstrate that our method
is also robust to initial values, we repeat the procedure
20 times with random initial location parameters. The
average P̂err2’s (≈ P̂err1) are reported in Table 2 along
with the standard deviation in parentheses and the
number of components in brackets. The error rates of
KSD and single Gaussian model are obtained from [8].

As expected, one single Gaussian distribution is not
sufficient to model this complex data. Its average error
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Unknown Species P̂err2 (also P̂err1) AUC

Spatial-EM Regular-EM KSD Gaussian SVM Spatial-EM Regular-EM Kotz-EM

Carpiodes carpio [6] 0.260 (.040) [9] 0.303 (.289) 0.234 0.408 0.156 0.821 (.014) 0.763 (.145) 0.802 (.088)

Carpiodes cyprinus [8] 0.181 (.114) [11] 0.212 (.230) 0.209 0.245 0.171 0.919 (.027) 0.932 (.043) 0.914 (.023)

Carpiodes velifer [5] 0.110 (.009) [9] 0.095 (.131) 0.180 0.144 0.094 0.930 (.003) 0.945 (.025) 0.938 (.006)

Hypentelium nigricans [5] 0.007 (.011) [11] 0.006 (.011) 0.071 0.054 0.017 0.995 (.004) 0.993 (.008) 0.990 (.003)

Pantosteus discobolus [5] 0.042 (.065) [9] 0.083 (.091) 0.056 0.091 0.029 0.991 (.006) 0.976 (.001) 0.991 (.001)

Campostoma oligolepis [8] 0.151 (.065) [12] 0.138 (.289) 0.208 0.385 0.158 0.908 (.026) 0.872 (.125) 0.792 (.085)

Cyprinus carpio [7] 0.001 (.001) [12] 0.019 (.034) 0.051 0.047 0.026 0.998 (.001) 0.998 (.003) 0.990 (.002)

Hybopsis storeriana [7] 0.294 (.033) [14] 0.371 (.403) 0.367 0.320 0.267 0.795 (.029) 0.834 (.174) 0.817 (.010)

Notropis petersoni [7] 0.138 (.154) [10] 0.181 (.159) 0.487 0.355 0.355 0.824 (.044) 0.780 (.155) 0.788 (.027)

Luxilus zonatus [6] 0.324 (.086) [5] 0.388 (.427) 0.512 0.460 0.344 0.776 (.012) 0.786 (.208) 0.659 (.070)

TABLE 2
Performance comparison of each method for fish species novelty discovery. A small P̂err2 (also P̂err1) and large

AUC value indicate better performance. Standard deviations are included in parentheses and the number of
components in brackets.

rate is the highest. Two EM methods outperform non-
parametric KSD because of the flexibility of mixture
models. They identify most of undiscovered species as
outliers with high detection rate and low false alarm
rate. For example, the detection rates of Hypentelium
nigricans and Cyprinus carpio are higher than 0.99 and
the false alarm rates are less than 0.01. It is clear that
the Spatial-EM based outlier detection yields the most
favorable result in terms of error rates; it outperforms
the regular-EM method in three aspects: (1) It has a
higher novelty detection rate than the regular-EM in
7 out of 10 species; (2) It consistently has a much
smaller standard deviation, indicating stability of our
approach. The regular-EM is highly dependent on ini-
tialization. For the worst three species Carpiodes carpio,
Hybopsis storeriana, and Luxilus zonatus, the regular-
EM is not statistically better than a random guess,
while the proposed method produces a detection
rate higher than 0.740, 0.706, and 0.676, respectively.
Spatial-EM significantly improves the sensitivity on
initialization of the regular EM. (3) It has a much
smaller number of components than the regular EM
method for all but one species. On average, the
regular-EM uses 4 more components than Spatial-EM
to model outliers. Usually, overly complicated models
tend to over fit data resulting poor generalization
performance, which explains large variances of the
regular EM. Spatial-EM handles outliers very well. It
yields simple models with good performance.

One-class SVM method [39] is also included
for comparison. We implemented one-class ν-SVM
method using R function ‘ksvm’ in the package ‘kern-
lab’. The bandwidth parameter σ of Gaussian kernel
and the parameter ν are selected such that the type-
I error and type-II error are approximately equal in
each fish species. Since ν is an upper bound on the

fraction of outliers in the training data, we search ν
in a small interval around the type-I errors of the
methods considered. Comparing with the Spatial-EM
method, one-class ν-SVM has a lower false alarm rate
in 5 species out of 10. Especially, the error rate 0.156
for Capiodes carpio is much lower than 0.260 of the
Spatial EM. However, in the Notropis petersoni case, the
Spatial-EM yields a small error rate 0.138 comparing
to 0.352 of KSVM.

For the AUC criterion, the Spatial-EM, regular EM
and Kotz-EM are compared. Function roc in R pack-
age ‘pROC’ is implemented to compute AUC. Kotz-
EM seems to be inferior to the other two methods.
One of reasons is probably its slow convergence. From
the experiment in Section 4.4, Kotz-EM suffers slow
convergence problem that downgrades performance
and increases the computation burden. However, it is
better than spatial-EM for Hybopsis storeriana species
with a larger AUC and a smaller standard deviation.
Regular EM outperforms spatial EM in cases of Carpi-
odes cyprinus, Hybopsis storeriana and Luxilus zonatus,
where the conclusion conflicts if the first metric is
used. It seems that the performance depends more
on the evaluation metric than the methods. But if we
look at the standard deviations of AUC for regular
EM, we should say that the results of regular EM are
very unstable and unreliable. There are 5 out of 10
cases in which the standard deviation for the regular
EM method excesses 0.125. Particularly, it is 0.174
in Hybopsis storeriana and 0.208 in Luxilus zonatus.
That makes the performance differences of the two
methods in those two cases insignificant. Kotz-EM is
relatively robust and Spatial-EM is the most robust
one.
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Fig. 3. (a)-(d): Performance of 2-cluster and 5-cluster
Spatial-EM and regular EM on two half-moon data. El-
lipses represent represent the estimated 95% density
contours of each cluster. (e): BIC criterion for choosing
the number of clusters to be 5.

6 CLUSTERING

Mixture model-based clustering is one of the most
popular and successful unsupervised learning ap-
proaches. It provides a probabilistic (soft) clustering
of the data in terms of the fitted posterior probabilities
(Tji’s) of membership of the mixture components with
respect to the clusters. An outright (hard) clustering
can be subsequently obtained by assigning each ob-
servation to the component to which it has the highest
fitted posterior probability of belonging. That is, xi is
assigned to the cluster arg maxj Tji.

Model-based clustering approaches have a nat-
ural way to select the number of clusters based
on some criteria, which have the common form of
log-likelihood augmented by a model complexity
penalty term. For example, Bayesian inference cri-
terion (BIC) [14], [15], [44], the minimum message

length (MML) [32], [51], the normalized entropy cri-
terion (NEC) [6], [2] etc. have yielded good results for
model choice in a range of applications. In this paper,
we deal with robustness of model-based clustering.
We assume that the number of clusters is known,
otherwise, BIC is used. BIC is defined as twice of the
log-likelihood minus p logN , where the likelihood is
the Gaussion based, N is the sample size and p is the
number of independent parameters. For a K compo-
nent mixture model, p = K − 1 + K(d + d(d + 1)/2)
with d being the dimension.

For performance assessment, the class labels
(ground truth) of training data or testing data are used
to construct a confusion matrix (matching matrix).
The false positive (rate) (FP/FPR), false negative (rate)
(FN/FNR), true positive (TP) and true negative (TN)
are computed from the confusion matrix to evaluate
the accuracy of clustering methods.

We present evaluations of Spatial-EM clustering on
the synthetic data and two real data sets. In the
simulation experiment, we will see how the number of
clusters impacts performance of the EM-based meth-
ods. Two real data sets, UCI Wisconsin diagnostic
breast cancer data and yeast cell cycle data, are used
for comparison of our method and some existing
clustering methods.

6.1 Synthetic Data

Two samples of sizes 100 and 150 with different orien-
tations and locations are generated from a half-moon
shaped distribution. In this experiment, if we assume
the number of clusters known to be 2, we will see both
regular EM and Spatial-EM fail. Ellipses in Figures 3
(a-b) represent the estimated 95% probability density
contours of two clusters, which do not quite follow
the shape of the data cloud. Clearly, EM clustering
methods based on Gaussian mixture yield clusters
with density contours constrained to be elliptical. One
cluster is not sufficient to model a half-moon shaped
distribution, which has a concave support region.

We apply BIC criterion to choose the number of
clusters. For a range of values of K (from 2 to 8),
we obtain BIC for both methods, see Figure 3 (e).
The optimal number of clusters is 5 with the largest
BIC values in both methods. With 5 components,
both methods perform much better than 2-cluster
EM methods. Figures 3 (c-d) provide the density
contours of 5 clusters. 2 or 3 clusters of Gaussian
mixture capture the half-moon shape well. Regular
EM performs better than the Spatial-EM in terms of a
higher BIC value and tighter clusters. This is because
if each component follows the Gaussian distribution,
the sample mean and sample covariance matrix are
most efficient estimators that makes the regular EM
most statistically efficient.
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Fig. 4. A projection of the UCI Wisconsin diagnostic breast cancer data. © and 4 represent a patient being
benign and malignant respectively. Filled symbols represent misclassified observations. Our method outperforms
the regular-EM one in terms of both errors.

6.2 UCI Wisconsin Diagnostic Breast Cancer Data

The Breast Cancer Wisconsin (Diagnostic) data set
in the UCI Machine Learning Repository is available
from http://archive.ics.uci.edu/ml/datasets. There are 569
observations from 357 patients with benign tumors
and 212 patients with malignant tumors. For graphical
illustration purpose, only two features mean texture
and extreme area are used for clustering analysis,
which is also the same setting as the experiment done
by [15]. The scatter plot of these two features in Figure
4 shows a considerable overlap between benign and
malignant patients.

In health care application, a malignant patient
should get the most attention in the clinical practice.
As usual, we define the malignant as a positive effect
and benign as a negative effect. The model-based
clustering from the Spatial-EM and the regular-EM
algorithms yield results shown in Figure 4. Filled sym-
bols represent misclassified observations. The Spatial-
EM based clustering achieves lower error rates in
both types of errors comparing with the regular EM
method. More specifically, the resulting spatial-EM
method has a FNR of 0.1320 slightly smaller than
0.1368 of the regular EM. The FPR of 0.0224 of Spatial
EM is just around 1/3 of that of regular EM. In fact,
medical screening tests that maintain a similar level of
FNR but much smaller FPR can save time, money and
clinic resource on the follow-up diagnostic procedures
and more importantly, relieve unnecessary worries of
those false positive diagnostic patients.

6.3 Yeast Cell Cycle Data

The yeast cell cycle data available from
http://faculty.washington.edu/kayee/model contain

expression levels of 384 genes over two cycles
(17 time points). The expression levels peaked at
different time periods correspond to the five phases
of cell cycles. Group 1 has 67 genes whose expression
levels reached peaks at early G1. Group 2 has 135
genes whose expression levels peaked at late G1
phase. Group 3 has 75 genes whose expression
levels reach peak at S stage. Group 4 has 52 genes
whose expression levels reached peaks at late G2
period. Group 5 has 55 genes whose expression
levels peaked at M stage. In each group, a number of
outliers are present. We expect our robust clustering
results having a good approximation of this five
class partition. We compare the proposed Spatial-EM
clustering method with five mixture model-based
clustering methods. Four of them are unsupervised
regular-EM [55], X-EM [57], robust K-medoid and
robust K-median method. The fifth one is supervised
SCA [36]. Also, the popular supervised support
vector machines (SVM) [4], the linear one as well as
the kernel one, are included in the study.

X-EM estimates the mixture model parameters by
maximizing a weighted likelihood. The weights are
specifically designed for automatic model selection by
introducing an additional parameter.

The model performance are measured based on
four indices (Table 3): false positive (FP), false neg-
ative (FN), true positive (TP), true negative (TN).
The total errors defined as FP+FN and error rate
are shown in Table 4. The results of X-EM, Regular-
EM, SCA and linear SVM are reproduced from [36],
[57]. We implemented KSVM by R function ‘ksvm’ in
the package ‘kernlab’. We used two-dimensional grid
and refined grid searching for optimal parameters
in order to balance between model complexity and
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Cell division phase Mehtods FP FN TP TN

Early G1 Spatial-EM 20 17 50 297
(67 genes) X-EM 11 24 43 306

Reg EM 50 12 55 267
K-medoid 26 19 48 291
K-median 23 18 49 299

SCA 21 21 46 296
LSVM 38 10 57 279
KSVM 7 9 58 310

Late G1 Spatial-EM 32 18 117 217
(135 genes) X-EM 13 54 81 236

Reg EM 28 40 95 221
K-medoid 39 22 113 207
K-median 36 22 113 227

SCA 24 35 100 225
LSVM 43 10 125 206
KSVM 26 5 130 223

S Spatial-EM 13 42 33 296
(75 genes) X-EM 10 47 28 299

Reg EM 33 49 26 276
K-medoid 37 42 33 272
K-median 35 36 39 273

SCA 37 36 39 272
LSVM 72 18 57 237
KSVM 7 26 49 302

G2 Spatial-EM 17 17 35 315
(52 genes) X-EM 13 22 30 319

Reg EM 28 41 11 304
K-medoid 35 36 16 297
K-median 33 33 19 299

SCA 18 29 23 314
LSVM 46 5 47 286
KSVM 6 10 42 326

M Spatial-EM 19 7 48 310
(55 genes) X-EM 12 26 29 317

Reg EM 38 42 13 291
K-medoid 15 33 22 314
K-median 15 31 24 298

SCA 19 8 47 310
LSVM 47 2 53 282
KSVM 8 4 51 321

TABLE 3
Performance comparison at each phase on yeast cell

cycle data.

better generalization. The optimal value for the slack
parameter is chosen to be 5 and the hyper-parameter
σ of Gaussian kernel is 0.075. The KSVM model
contains 281 support vectors out of 384 observations.
The training error rate of KSVM is 14.06%, which is
much better than 26.30% of ours. However, if we look
at the 3-fold cross-validation (testing) error, 25.26% of
KSVM, is comparable to 24.14% of spatial EM when
the same cross-validation data sets are applied. KSVM
seems suffering the over-fitting problem, while our
algorithm is an unsupervised method having a good
generalization power.

The K-medoid method is implemented using R
function ‘pam’ in ‘cluster’ package and the K-median
method is implemented with ‘kcca’ in ‘flexclust’ pack-
age. Table 4 shows that the Spatial-EM outperforms
all the other 6 methods in terms of the total error.
The regular EM has high FPR and FNR with the poor

Methods FP FN FP+FN Error Rate

Spatial-EM 101 101 202 26.30%
X-EM 59 173 232 30.21%

Reg EM 177 184 361 47.01%
K-medoid 152 152 304 39.58%
K-median 142 140 282 36.72%

SCA 119 129 248 32.28%
SVM 246 45 291 37.89%

KSVM (Training) 54 54 108 14.06%

TABLE 4
Total error rate comparison on yeast cell cycle data.

recognition of the last two groups. We expect a poor
performance of K-median and K-medoid because they
ignore the covariance structure for each component,
but they are still better than non-robust regular EM. K-
median performs slightly better than K-medoid since
it doesn’t have any constraints on the center of each
cluster. It is amazing to see that the two supervised
learning methods that use the label information can
not win against unsupervised X-EM and Spatial-EM.
It can be seen that the X-EM has a relatively high
FNR. This is probably because the weight scheme
changes the fitted posterior probabilities and hence
underestimate the covariance matrix in each compo-
nent to produce a high false negative rate. The Spatial-
EM correctly estimates the model parameters in the
presence of outliers, hence yields the best result with
a well-balanced FP and FN.

7 CONCLUSIONS AND FUTURE WORK

We proposed a new robust EM algorithm so called
Spatial-EM for finite elliptical mixture learning. It
replaces the sample mean and sample covariance with
the spatial median and the modified spatial rank
covariance matrix. It is robust not only to outliers but
also to initial values in EM learning. Compared with
many robust mixture learning procedures, the Spatial-
EM has the advantages of computation ease and
statistical efficiency. It has been applied to supervised
learning with emphasis on outlier detection and unsu-
pervised clustering. We adopt the outlier detection to
taxonomic research on fish species novelty discovery,
in which the known species are modeled as a finite
mixture distribution, a new species is identified using
an outlyingness function that measures distance to
the underlying model (i.e., known species). The key
ingredient of this application is to correctly estimate
the mixture model given that the data of the known
species are heterogeneous with a number of atypical
observations. UCI Wisconsin diagnostic breast cancer
data and yeast cell cycle data are used for clustering
analysis. Our method shows superior performance
comparing with existing methods and demonstrates
competitive classification power and high robustness.

The proposed method has some limitations. The
first limitation is indeed for all EM methods. That is
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EM methods only suitable for the numerical vector
type of data. They can’t be directly applied to other
types of data such as documents or graphs. The
graph data contain pairwise similarity or dissimilarity
relationships between objects, which are difficult to
convert back to a vector representation of each object
and hence the EM methods are not appropriate. The
document file usually contains numerical, categorical
and symbolic variables. As currently formulated, EM
methods cannot handle categorical and symbolic fea-
tures. EM methods also encounter difficulties to deal
with image data directly. Because low rank structure
in high dimension is a typical feature of image data,
a direct application of EM methods will lead to the
singularity problem of estimated covariance matrices.
Hence the dimension reduction has to be done before
applying EM methods.

The second limitation is the computation speed.
Although our method is faster than most other robust
procedures, its computational complexity is O(n2 +
d3), which may not be feasible for large-scale applica-
tions, especially in high dimensions. We will continue
the work to parallelize or approximate to speed up
the computation. Also other modifications of RCM
definitely deserve exploration in our future work.

In the current work, we assumed the number of
components known or simply applied BIC for choos-
ing the number of clusters in unsupervised learn-
ing procedures. For supervised learning, we used
the heuristic based “one-standard-error” rule to de-
termine the number of components. In both cases,
systematical and theoretical developments on the se-
lection of robust models are needed and will be
continuations of this work.

ACKNOWLEDGMENTS
Partial financial support for this research was pro-
vided by NSF under award numbers MCB-1027989
and MCB-1027830.

REFERENCES
[1] Bashir, S. and Carter, E.M. (2005). High breakdown mixture

discriminant analysis. Journal of Multivariate Analysis, 93(1),
102-111.

[2] Biernacki, C., Celeux, G. and Govaert, G. (1999). An improve-
ment of the NEC criterion for assessing the number of clusters
in a mixture model. Pattern Recognition Letters, 20, 267-272.

[3] Brown, B. (1983). Statistical uses of the spatial median. Journal
of the Royal Statistical Society, B, 45, 25-30.

[4] Brown, M.P., Grundy, W.N., Lin, D., Cristianini, N., Sugnet,
C.W., Furey, T.S., Ares, M. and Haussler, D. (2000). Knowledge-
based analysis of microarray gene expression data by using
support vector machines. Proceedings of the National Academy
of Sciences, 97(1), 262-267.

[5] Campbell, N.A. (1984). Mixture models and atypical values.
Mathematical Geology, 16, 465-477.

[6] Celeux, G. and Soromenho, G. (1996). An entropy criterion
for assessing the number of clusters in a mixture model.
Classification Journal, 13, 195-212.

[7] Chen, Y., Bart Jr, H., Dang, X. and Peng, H. (2007). Depth-
based novelty detection and its application to taxonomic re-
search. The Seventh IEEE International Conference on Data Mining
(ICDM), 113-122, Omaha, Nebraska.

[8] Chen, Y., Dang, X., Peng, H. and Bart Jr, H., (2009). Outlier
detection with the kernelized spatial depth function. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 31, 288-
305.

[9] Chueng, Y. (2005). Maximum weighted likelihood via rival
penalized EM for density mixture clustering with automatic
model selection. IEEE Transactions on Knowledge and Data En-
gineering, 17(6), 750-761.

[10] Dang, X. and Serfling, R. (2010). Nonparametric depth-based
multivariate outlier identifiers, and masking robustness prop-
erties. Journal of Statistical Inference and Planning, 140, 198-213.

[11] Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977). Maximum
likelihood from incomplete data via the EM algorithm, Journal
of Royal Statistical Society, B 39, 1-38.

[12] Donoho, D. and Huber, P. (1983). The notion of breakdown
point. In A Festschrift for Erich L. Lehmann (P. Bickel, K. Doksum
and J. Hodges, eds.) 157-184. Wadsworth, Belmont, CA.

[13] Figueiredo, M. and Jain, A.K. (2002). Unsupervised learning
of finite mixture models. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 24(3), 381-396.

[14] Fraley, C. and Raftery, A. (1999). MCLUST: Software for model-
based cluster analysis. Journal of Classification, 16, 297–306.

[15] Fraley, C. and Raftery, A. (2002). Model-based clustering,
discriminant analysis and density estimation. Journal of the
American Statistical Association, 97, 611–631.

[16] Fujisawa, H. and Eguchi, S. (2006). Robust estimation in
the normal mixture model. Journal of Statistical Planning and
Inference, 136(11), 3989-4011.

[17] Hardin, J. and Rocke, D.M. (2004). Outlier detection in the
multiple cluster setting using the minimum covariance deter-
minant estimator. Computational Statistics and Data Analysis, 44,
625-638.

[18] Hastie, T., Tibshirani, R. and Friedman, J., (2001) The Elements
of Statistical Learning- Data Mining, Inference and Prediction.
Springer, New York.

[19] Huber, P.J. (1982), Robust Statistics. Wiley, New York.
[20] Kent, J.T., Tyler, D.E. and Vardi,Y. (1994). A curious likelihood

identity for the multivariate t distribution. Communication in
Statistics - Simulation and Computations, 23, 441-453.

[21] Liu, C. and Rubin, D. B. (1995). ML estimation of the t
distribution using EM and its extension. Statistica Sinia, 5, 19-
39.

[22] Marden, J. (1999). Some robust estimates of principal compo-
nents, Statistics & Probability Letters, 43, 349–359.

[23] Markaton, M. (2000). Mixture models, robustness, and the
weighted likelihood methodology. Biometrics, 56, 483-486.

[24] Maronna, R.A., Martin, R.D. and Yohai, V.J. (2006). Robust
Statistics: Theory and Methods. Wiley.

[25] Melnykov, V. and Maitra, R. (2010). Finite mixture models and
model-based clustering. Statistics Surveys, 4, 80-116.

[26] Neykov, N., Filzmoser, P., Dimova, R. and Neytchev, P. (2007).
Robust fitting of mixture using the trimmed likelihood esti-
mator. Computational Statistics and Data Analysis, 52, 299-308.

[27] McLachlan, G.J. and Krishan, T. (1997). The EM Algorithm and
Extensions. Wiley.

[28] McLachlan, G.J. and Peel, D. (1998). Robust cluster analysis
via mixtures of multivariate t distributions.

[29] McLachlan, G.J and Peel, D. (2000). Finite Mixture Models.
Wiley, New York.

[30] Miller, D.J. and Browning, J. (2003). A mixture model and EM-
based algorithm for class discovery, robust classification, and
outlier rejection in mixed labeled/unlabelled data sets. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 25(11),
1468-1483.

[31] Oja, H. (2010). Multivariate Nonparametric Methods with R: An
Approach Based on Spatial Signs and Ranks. Springer.

[32] Oliver, J., Baxter, R. and Wallace, C. (1996). Unsupervised
learning using MML. Proceedings of 13th International Conference
in Machine Learning, 364-372.

[33] Peel, D. and McLachlan, G.J. (2000). Robust mixture modelling
using the t distribution. Statistics and Computing, 10, 339-348.

[34] Plungpongpun, K. and Naik, D. (2008). Multivariate analysis
of variance using a Kotz type distribution. In Proceeding of the
World Congress on Engineering 2008 Vol II. WCE 2008, July 2-4
2008, London, U.K.



1041-4347 (c) 2013 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TKDE.2014.2373355, IEEE Transactions on Knowledge and Data Engineering

14

[35] Qin, Y. and Priebe, C.E. (2012). Maximum Lq-likelihood esti-
mation via the expectation maximization algorithm: a robust
estimation of mixture models. Submitted.

[36] Qu, Y. and Xu, S. (2004). Supervised cluster analysis for
microarray data based on multivariate Gaussian mixture.
Bioinformatics, 20(12), 19051913.

[37] Rao, C. R. (1988). Methodology based on the L1-Norm in
statistical inference. Sankhya, Series A, 50, 289-313.

[38] Roberts, S. and Tarassenko, L. (1994). A probability resource
allocating network for novelty detection. Neural Computation,
6(2), 270-284.

[39] Schölkopf, B., Platt, J.C., Shawe-Taylor, J. and Smola, A. (2001).
Estimating the support of a high-dimensional distribution.
Neural Computation, 13(7), 1443-1471.

[40] Serfling, R. (2002). A depth function and a scale curve based
on spatial quantiles. Statistical Data Analysis Based on the L1-
Norm and Related Methods, Dodge, Y., ed., 25-38.

[41] Serfling, R. (2010). Equivariance and invariance properties of
multivariate quantile and related functions, and the role of
standardization. Journal of Nonparametric Statistics, 22, 915–936.

[42] Shoham, S. (2002). Robust clustering by deterministic agglom-
eration EM of mixtures of multivariate t-distributions. Pattern
Recognition, 35, 1127-1142

[43] Small, C. G. (1990). A survey of multidimensional medians.
International Statistical Review, 58(3), 263-277.

[44] Stanford, D. and Raftery, A.E. (2000). Principle curve clustering
with noise. IEEE Transactions on Pattern Analysis and machine
Intelligence, 22, 601-609.

[45] Tadjudin, S. and Landgrebe, D.A. (2000). Robust parameter
estimation for mixture model. IEEE Transactions on Geoscience
and Remote Sensing, 38, 439-445.

[46] Titterington, D.M., Smith, A.F.M. and Markov, U.E. (1985).
Statistical Analysis of Finite Mixture Distributions. Wiley, New
York.

[47] Tyler, D. (1987). A distribution-free M-estimator of multivari-
ate scatter. Annals of Statistics, 15, 234–251.

[48] Vardi, Y. and Zhang, C. (2000). The multivariate L1-median
and associated data depth. Proceedings of National Academy of
Sciences USA 97, 1423-1436.

[49] Visuri, S., Koivunen, V., and Oja, H. (2000). Sign and rank
covariance matrices. Journal of Statistical Planning and Inference,
91, 557-575.

[50] Vlassis, N. and Likas, A. (2002). A greedy EM algorithm for
Gaussian mixture learning. Neural Processing Letters, 15, 77-87.

[51] Wallace, C. and Dowe, D. (1999). Minimum message length
and Kolmogorov complexity. The Computer Journal, 42(4), 270-
283.

[52] Weber, A. (1909). Theory of the Location of Industries (translated
by C. J. Friedrich from Weber’s 1909 book). University of
Chicago Press, 1929.

[53] Wu, C.F. (1983). On the convergence properties of the EM
algorithm. The Annals of Statistics, 11, 95-103.

[54] Yamanishi, K., Takeuchi, J. I., Williams, G. and Milne, P.
(2004). On-line unsupervised outlier detection using finite
mixtures with discounting learning algorithms. Data Mining
and Knowledge Discovery 8, 275-300.

[55] Yeung, K.Y., Fraley, C., Murua, A., Raftery, A.E. and Ruzzo,
W.L. (2001). Model-based clustering and data transformations
for gene expression data, Bioinformatics, 17, 977-987.

[56] Yu, K., Dang, X. and Chen, Y. (2013). Robustness of the
affine equivariant scatter estimator based on the spatial rank
covariance matrix. Communications in Statistics - Theory and
Method, to appear.

[57] Zhang, Z. and Cheung, Y. (2006). On weight design of max-
imum weighted likelihood and an extended EM algorithm.
IEEE Transactions on Knowledge and Data Engineering, 18(10),
1429-1434.

Kai Yu received the PhD degree from De-
partment of Mathematics, University of Mis-
sissippi in 2012. Currently, he is Business
Intelligence Engineer in Amazon Web Ser-
vice to help building the fraud prevention and
detection system using cutting-edge technol-
ogy. His research interests include machine
learning, data mining and pattern recogni-
tion.

Xin Dang received the PhD degree in statis-
tics from the University of Texas at Dallas in
2005. Currently she is an assoicate professor
of the department of mathematics at the Uni-
versity of Mississippi. Her research interests
include robust and nonparametric statistics,
statistical and numerical computing, and mul-
tivariate data analysis. In particular, she has
focused on data depth and application, ma-
chine learning, and robust procedure compu-
tation. Dr. Dang is a member of the ASA and

IMS.

Henry L. Bart Jr. is Professor of Ecology
and Evolutionary Biology at Tulane Univer-
sity, and Director of the Tulane University
Biodiversity Research Institute (TUBRI). He
holds Bachelor of Science and Master of Sci-
ence degrees in Biological Sciences from the
University of New Orleans, and Ph.D. in Zool-
ogy from the University of Oklahoma. Prior to
joining the Tulane University faculty in 1992,
he held faculty positions at the University of
Illinois and Auburn University. Barts research

specialty is ecology and taxonomy of freshwater fishes. He is Curator
of the Royal D. Suttkus Fish Collection at TUBRI - the largest
research collection of post-larval fishes in the world. Bart leads a
number of biodiversity informatics projects at TUBRI, including the
GEOLocate georeferencing software development projects and the
Fishnet2 network of fish collection databases. He is a member of
a number of national boards and steering committees serving the
U.S. natural history collections community. Bart teaches classes in
Ichthyology, Stream Ecology, Natural Resource Conservation and
Biodiversity Informatics to Tulane undergraduates and graduate stu-
dents.

Yixin Chen received B.S.degree (1995) from
the Department of Automation, Beijing Poly-
technic University, the M.S. degree (1998) in
control theory and application from Tsinghua
University,and the M.S. (1999) and Ph.D.
(2001) degrees in electrical engineering from
the University of Wyoming. In 2003, he re-
ceived the Ph.D. degree in computer science
from The Pennsylvania State University. He
had been an Assistant Professor of computer
science at University of New Orleans. He

is now an Associate Professor at the Department of Computer
and Information Science, the University of Mississippi. His research
interests include machine learning, data mining, computer vision,
bioinformatics, and robotics and control. Dr. Chen is a member of
the ACM, the IEEE, the IEEE Computer Society, the IEEE Neural
Networks Society,and the IEEE Robotics and Automation Society.


